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M A J O R A R T I C L E

Rates of Acquisition and Clearance of
Pneumococcal Serotypes in the Nasopharynges
of Children in Kilifi District, Kenya

Osman Abdullahi,1,2 Angela Karani,1 Caroline C. Tigoi,1 Daisy Mugo,1 Stella Kungu,1 Eva Wanjiru,1 Jane Jomo,1

Robert Musyimi,1 Marc Lipsitch,2,3 and J. Anthony G. Scott1,4

1Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya; 2Department of Immunology and Infectious Diseases and
3Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; and 4Nuffield Department of Clinical Medicine, Oxford
University, United Kingdom

Background. To understand and model the impact of pneumococcal conjugate vaccines at the population
level, we need to know the transmission dynamics of individual pneumococcal serotypes. We estimated serotype-
specific clearance and acquisition rates of nasopharyngeal colonization among Kenyan children.

Methods. Children aged 3–59 months who were identified as carriers in a cross-sectional survey were
followed-up approximately 1, 2, 4, 8, 16, and 32 days later and monthly thereafter until culture of 2 consecutive
swabs yielded an alternative serotype or no pneumococcus. Serotype-specific clearance rates were estimated by
exponential regression of interval-censored carriage durations. Duration was estimated as the reciprocal of the
clearance rate, and acquisition rates were estimated on the basis of prevalence and duration, assuming an equilib-
rium state.

Results. Of 2840 children sampled between October 2006 and December 2008, 1868 were carriers. The clear-
ance rate was 0.032 episodes/day (95% confidence interval [CI], .030–.034), for a carriage duration of 31.3 days,
and the rate varied by serotype (P < .0005). Carriage durations for the 28 serotypes with ≥10 carriers ranged from
6.7 to 50 days. Clearance rates increased with year of age, adjusted for serotype (hazard ratio, 1.21; 95% CI, 1.15–
1.27). The acquisition rate was 0.061 episodes/day (95% CI, .055–.067), which did not vary with age. Serotype-
specific acquisition rates varied from 0.0002 to 0.0022 episodes/day. Serotype-specific acquisition rates correlated
with prevalence (r = 0.91; P < .00005) and with acquisition rates measured in a separate study involving 1404 new-
borns in Kilifi (r = 0.87; P < .00005).

Conclusions. The large sample size and short swabbing intervals provide a precise description of the preva-
lence, duration, and acquisition of carriage of 28 pneumococcal serotypes. In Kilifi, young children experience
approximately 8 episodes of carriage per year. The declining prevalence with age is attributable to increasing
clearance rates.

Pneumococcal conjugate vaccines (PCVs) were highly
efficacious against invasive pneumococcal disease
(IPD) in randomized controlled trials in developed

and developing countries [1–4] and were highly effec-
tive when introduced into the national vaccination
programs of developed countries [5, 6]. On this evi-
dence, the GAVI Alliance has pledged funding
support for PCVs in developing countries, and several
of these countries have recently introduced 10- or 13-
valent PCV. The programmatic effectiveness of PCV
against IPD has been confirmed by large-scale longitu-
dinal surveillance systems that are not generally avail-
able in developing countries [5, 6]. In the United
States, vaccination of young children has led to a re-
duction of IPD in older children, neonates, adults, and
elderly individuals [5, 7, 8]. Studies of PCV consistent-
ly show a reduction in carriage of vaccine-serotypes
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among vaccinees, which provides a plausible explanation for
indirect protection [9–12]. A corollary of this effect is an in-
crease in the carriage of nonvaccine serotypes, and in some
settings this has led to an increase in IPD both among chil-
dren and elderly individuals [6, 13]. The unpredictability of
this effect and the lack of monitoring systems for IPD in de-
veloping countries have raised the question of whether studies
of pneumococcal carriage can help understand or predict indi-
rect vaccine effects in different epidemiological settings [14].

For the purpose of modeling, this problem can be divided
into 2 components. The first component characterizes the epi-
demiology of transmission in a stable prevaccine population
and explores the impact of vaccine introduction by using esti-
mates of vaccine efficacy against nasopharyngeal colonization
that are derived from field studies of PCV. This type of
model also requires epidemiologic data on carriage prevalence
[15, 16]; the force of infection, defined as the rate of acquisi-
tion among uncolonized individuals [17]; and competition
between serotypes for the nasopharyngeal niche [18–20]. The
second component overlays the risk of disease associated with
a colonization episode on top of the transmission model to
predict the population rate of IPD. Because the risk of IPD is
thought to be most closely associated with acquisition of colo-
nization rather than with duration, the second component
uses the “attack rate” (calculated as the rate of pneumococcal
acquisition divided by the rate of IPD) [16, 21, 22] to produce
credible estimates of disease incidence.

With the exception of prevalence, few data exist on the dy-
namics of pneumococcal carriage to support these models.
Furthermore, what little can be derived is confined to highly
prevalent types, which are generally those included in vaccine
formulations [19, 23]. In this study, we describe the preva-
lence, duration, and rates of acquisition of pneumococcal car-
riage for a wide range of serotypes, including those that are
most likely to predominate in the postvaccine era, in a repre-
sentative sample of African children prior to PCV
introduction.

MATERIALS AND METHODS

Study Population
The study was conducted among children aged 3–59 months
who were residents of the Kilifi Health and Demographic Sur-
veillance System (KHDSS) [24]. This is a longitudinal surveil-
lance of 250 000 people living in a well-defined geographic
area around Kilifi District Hospital. At the midpoint of the
present study (23 January 2008), the KHDSS had a population
of 42 345 individuals aged 3–59 months.

Study Design
This was a longitudinal study of individuals with prevalent na-
sopharyngeal carriage who were followed until the index

episode of carriage was terminated. The carrier population
was defined by a cross-sectional survey of 3570 children select-
ed at random from the KHDSS population register, of whom
consent to participate was received for 2840 [25].

Carrier status was defined by a baseline nasopharyngeal
swab that yielded pneumococci on culture, and children who
were found to be carriers were swabbed again on approximate-
ly days 1, 2, 4, 8, 16, and 32 after the baseline swab and
monthly thereafter until the episode of carriage was terminat-
ed. We defined termination as the observation of 2 consecutive
swabs in which the original serotype was not detected on cul-
ture. Clearance was subcategorized as immune clearance, if
the first of these 2 swabs was negative for any pneumococcal
growth, or as competitive displacement, if the first of these 2
swabs was positive for an alternative serotype of pneumococ-
cus. For any one serotype, recruitment of carriers into the lon-
gitudinal study ceased when we had identified 50 episodes of
carriage of that serotype, although data for additional carriers
beyond these 50 were included in prevalence estimates.

Laboratory Assay
The study followed World Health Organization guidelines for
nasopharyngeal studies of Streptococcus pneumoniae [26]. Na-
sopharyngeal specimens were sampled using Dacron-tipped
flexible wire swabs passed via the anterior nares to the posteri-
or nasopharynx. The swab tip was immersed in skim-milk
tryptone glucose glycerol (STGG) transport medium, separat-
ed from its handle with wire cutters, and transported at
ambient temperature to the laboratory, where they were cul-
tured directly. Internal quality control of STGG was conducted
to ensure sterility and the ability to support pneumococcal
growth. STGG samples were vortexed for 20 seconds, and a
10-µL specimen was inoculated onto a blood agar plate
containing 2.5 μg/mL gentamicin and incubated overnight at
37°C in 5% CO2. Pneumococci were identified by α-hemolysis,
optochin sensitivity, and presence of capsule. We serotyped 1
colony per plate, using the Quellung reaction and polyclonal
rabbit antisera (Statens Seruminstitut, Copenhagen, Denmark).
Antisera to differentiate serotype 6C from 6A were not avail-
able at the time of this study.

Analysis
The analyses were performed using Stata v11.2 (StataCorp,
College Station, TX). The total rate of clearance was estimated
by fitting an exponential function to the interval-censored car-
riage durations, in which the intervals were defined by the
date on which the last swab positive for the prevalent type was
collected and the date on which the first swab with a negative
or other result was collected. We excluded children with <3
swabs from the analysis. Children who did not clear the prev-
alent serotype were right censored at the date on which the
last swab positive for that serotype was collected. Multivariable
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exponential regression models were undertaken that included
age in 10 strata, sex, and serotype. With the assumption of a
constant rate of loss, the average duration of carriage was esti-
mated as the reciprocal of the rate of clearance.

The analysis of clearance combined both immune clearance
and competitive displacement. To calculate the rate of
immune clearance alone, we right censored displaced episodes
at the date on which the last swab positive for the prevalent
serotype was collected.

Acquisition rates were estimated by using the relationship
between prevalence, incidence, and duration in a steady-state
population [27]. With constant prevalence, the population
rates of acquisition and of clearance must be equal. By assum-
ing, for simplicity, that acquisition occurs only among un-
colonized children, the individual rate of clearance, b, among
the proportion of the population who are carriers, p, is equal
to the individual incidence of acquisition, a, among the pro-
portion who are noncarriers [1 – p], which can be expressed
as follows: log a = log [p/(1 – p)] + log b. To validate these in-
direct estimates of acquisition, we compared them against
rates measured directly in a separate study of children in Kilifi,
reported elsewhere [28]. Uncolonized newborn infants were
studied to determine the force of infection. Infants were
swabbed weekly for 13 weeks or until they were colonized
with S. pneumoniae. Serotype-specific acquisition hazard rates
(HRs) were estimated using survival analysis.

The Kenya Medical Research Institute/National Ethical
Review Committee and The Oxford Tropical Research Ethics
Committee approved the study, and written informed consent
was obtained for all participants.

RESULTS

In total, 9466 swabs were collected throughout the study,
yielding 7331 pneumococcal isolates. The baseline survey
took place between 23 October 2006 and 2 December 2008;
2840 children were sampled [25]. The baseline survey identi-
fied 1868 carriers, but only 1478 were eligible for analysis
(Figure 1). Of these, 444 carriage episodes were terminated
by clearance, 613 were terminated by displacement, and 421
persisted either until the participant withdrew or until the
end of the study period (Table 1). The last swab was collected
on 17 February 2009. The median time between the 2 swabs
used for interval censoring was 6 days. We calculated clear-
ance and acquisition rates for the 28 serotypes that had ≥10
episodes of carriage, which represented 96% of all carried
types.

Rates of Clearance
The overall rate of clearance for the colonizing pneumococci
identified at the cross-sectional survey was 0.032 episodes/day
(95% confidence interval [CI], .030–.034), giving a carriage

duration estimate of 31.3 days (95% CI, 29.7–33.6 days) and a
clearance half-life of 22 days. The clearance rate did not vary
by sex but increased progressively with age (HR, 1.25 per year;
95% CI, 1.20–1.31) (Figure 2 and Supplementary Table 1).
Older children are colonized less frequently by the most com-
monly observed serotypes [25]; however, the association
between clearance rate and age was little altered by adjustment
for serotype (HR, 1.21 per year; 95% CI, 1.15–1.27), suggesting
that the age-related change in clearance reflects changes in
duration within serotype and not only a changing serotype
composition with age.

The rate of clearance varied significantly by serotype
(P < .0005). Among the 28 most common serotypes, the clear-
ance rate varied almost 8-fold, from 0.0197 episodes/day for
serotype 6A to 0.149 episodes/day for serotype 33B (Table 2
and Figure 4), representing a range in carriage durations of 6.7
to 50 days (Table 2). Serotypes can be categorized by vaccine
formulation as 7-valent serotypes (serotypes 4, 6B, 9V, 14,
18C, 19F, and 23F), 10-valent serotypes (7-valent serotypes
plus serotypes 1, 5, and 7F), 13-valent serotypes (10-valent se-
rotypes plus serotypes 3, 6A, and 19A), and all others. The

Figure 1. Flow of participants through the study.
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mean duration of carriage in these 4 groups was 38.1, 7.7,
39.8, and 24.4 days, respectively.

The log rates for serotype-specific clearance were inversely
correlated with the log odds of prevalence (r =−0.80;
P < .00005) (Supplementary Figure 1).

The rate of immune clearance was substantially lower than
the total clearance rate, at 0.0148 episodes/day (95% CI,
0.0135–0.0163); the average carriage duration, in the absence
of competition, was 68 days. However, the immune clearance
rate was similarly associated with age (HR, 1.40 per year; 95%
CI, 1.30–1.51), and the increase in total clearance rates with
age closely reflects the pattern of immune clearance rates with
age (Figure 3 and Supplementary Table 2).

Rates of Acquisition
The estimated rate of acquisition of pneumococcal coloniza-
tion was 0.061 episodes/day (95% CI, .055–.067), suggesting

that each child experiences 1 new acquisition on average every
16.4 days.

Acquisition rates did not vary systematically with age
(Figure 2) but did vary by serotype, from 0.0002 episodes/day
for serotype 21 to 0.0022 episodes/day for serotype 19F. These
represent 1 new acquisition of serotype 19F every 15 child-
months and 1 new acquisition of serotype 21 every 14 child-
years. The sum of all serotype-specific acquisition rates, 0.064
episodes/day, was very close to the acquisition rate estimate
for all pneumococci treated as a single strain. When the sero-
types were ranked in order of decreasing prevalence, the
serotype-specific acquisition rates declined, and the serotype-
specific clearance rates increased in approximately equal
magnitudes (Figure 4). By serotype, the acquisition rates were
highly correlated with prevalence (r = 0.91; P < .00005); and
the log rates of acquisition and clearance were negatively
correlated (r =−0.38; P = .046) (Supplementary Figure 1).

We compared the serotype-specific rates of acquisition
derived in this study with serotype-specific rates of acquisition
measured directly in a population of 1404 newborns in the
same setting in Kilifi (Figure 5) [28]. Among the most fre-
quent 28 serotypes in the newborn study, acquisition rates
were highly correlated (r = 0.87; P < .00005). For the 28 most
common serotypes, the serotype-specific acquisition rates in
this study were on average 1.47 times those observed for
newborns.

DISCUSSION

This is the largest single study of nasopharyngeal carriage dy-
namics conducted in a developing country and includes
almost 10 000 swabs. In a setting where the carriage preva-
lence is 66% [25], the study shows that a child acquires a new
colonizing strain once every 16 days and that the average du-
ration of carriage is 32 days. By estimating the relatively lower
rates of immune clearance, the study illustrates the significant
role of competitive displacement in pneumococcal ecology. It
also shows that the declining prevalence of carriage with age is
explained by a reduction in clearance rates rather than by an
increase in acquisition rates and that the relative rate of acqui-
sition of different serotypes is most cogently explained by the
relative prevalence of those types in the nasopharynges of this
subpopulation.

Although we did not detect the onset of carriage, we were
able to obtain a valid estimate of carriage duration by using
the reciprocal of the clearance rates from an exponential re-
gression model. Participants who remained colonized at the
end of the study contributed valid risk time to these clearance
rate estimates. Normally, in a longitudinal carriage study of
intermittent swabbing there is uncertainty about the timing of
acquisition and uncertainty about the timing of clearance. The
approach we have adopted eliminates one of these sources of

Table 1. Number of Swab Observations Involved in Defining
Each Episode of Carriage, by Outcome of the Episode

Variable

Episode
Terminated by

Immune
Clearance

Episode
Terminated by
Competitive
Displacement

Episode Not
Terminated

Swabs
defining the
episode, no.
3 124 165 148

4 62 81 85

5 67 75 58
6 66 69 49

7 59 94 30

8 34 75 26
9 14 30 11

10 6 13 4

11 6 5 4
12 4 3 2

13 0 2 2

14 0 0 1
15 1 0 0

16 0 0 0

17 1 1 1
Overall 444 613 421

Swabs/child,
no., mean

5.3 5.5 4.9

Follow-up
duration, days

Mean 34 44 33

Maximum 333 297 486

Data are no. of study subjects, unless otherwise indicated. A total of 7818
swabs from 1478 children who had at least 3 swabs are included in the
analysis. In addition, 1362 children were sampled in the baseline survey, and
286 were sampled a second time but did not enter the longitudinal analysis.
Among children whose episode was not observed to the end by the study
definition, 153 had a final swab that was negative for the original serotype.
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uncertainty. We also optimized the estimate of clearance by
using the data set as a whole to inform the clearance function,
rather than by imposing an arbitrary rule (eg, the midpoint).
Finally, compared with the standard sampling schedule of
fortnightly or monthly swabs, the intense sampling in the first
2 weeks of the study increased the precision of our estimates
of short-duration episodes. Studies of smaller size, wider sam-
pling intervals, and midpoint censoring will obtain an estimat-
ed carriage duration that is biased upward. Not surprisingly,
therefore, the estimate of carriage duration in this study, 32
days, is shorter than that estimated in several other studies.
For example, in longitudinal studies of Swedish and British
children <5 years old, the mean carriage durations were 43
and 51 days [29, 30], and among Gambian children aged 1–4
years, the mean duration was 84 days [31].

Comparisons of carriage duration across populations are,
however, of limited usefulness given geographical variations in
serotype prevalence and the 8-fold variation in serotype-
specific clearance rates seen in this data set. Nonetheless, even
within serotype-specific comparisons, our estimates of dura-
tion are shorter than those observed in other developing coun-
tries. For example, the average carriage duration of serotypes
6A and 6B (46–51 days) was less than that of serotype 6A in
the Gambia (77 days) or for serogroup 6 in Papua New
Guinea (63 days) [31, 32].

Consistent with other studies [30, 31], we observed an in-
crease in the rate of clearance with age. The stability of acquisi-
tion rates with age indicates that the progressive decline in

carriage prevalence between the ages of 3 and 59 months is at-
tributable to the progressive decline in the carriage duration. Al-
though the pattern of serotypes carried varies significantly with
age among children [25], the increased rate of clearance with age
is not attributable to confounding by changing serotype pat-
terns, suggesting that it is an inherent characteristic of the host.
When competitive displacement was excluded from our analyses
of clearance, the residual rate of immune clearance closely shad-
owed the change in total clearance rates by age, further support-
ing the role of host immune maturation [33, 34].

We used an established epidemiological relationship
between acquisition, duration, and prevalence to estimate ac-
quisition rates [27]. The estimate obtained, 0.064 episodes/day,
is consistent with an estimate from Papua New Guinea
(≥0.046 episodes/day) [32] but substantially higher than the
estimate among children aged <3 years in England (0.012
episodes/day), where the prevalence and risk of exposure are
much lower [29]. The method used assumes equilibrium
between acquisition and clearance around a constant preva-
lence. For all pneumococcal carriage, there is wide variation in
prevalence by season [25, 35], but performing the baseline
prevalence survey over a period of 23 months likely mitigated
the impact of season in our study.

The fact that the serotype-specific estimates of acquisition
in the present study are similar to those measured directly in a
separate study of newborns in the same area provides a reas-
suring validation of the epidemiological model. The sum of all
serotype-specific acquisition rates in the present study also

Figure 2. Rates of clearance and acquisition of pneumococcal colonization, by age. Abbreviation: CI, confidence interval.
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approximates the summary estimate of acquisition for pneu-
mococcal carriage as a whole, further validating the approach.
The study was designed specifically to observe carriage epi-
sodes of short duration, but in most of these short-duration
episodes termination was by displacement rather than by
immune clearance. This raises 2 significant issues for interpre-
tation: the role competition in the nasopharynx and the need
to quantify multiple-serotype carriage.

Acquisition of carriage can occur in an uncolonized indi-
vidual or in an individual already colonized with another type.
Similarly, an episode of carriage can be terminated by clear-
ance to the uncolonized state or by colonization with any
other serotype. For pneumococci as a whole, our estimate of
the immune clearance rate is lower than the total clearance
rate, which confirms the important role of intraspecies compe-
tition in the determination of prevalence. It is likely that ac-
quisition rates among uncolonized individuals are also higher

than those among individuals who are already colonized. A
significant limitation of the present study, therefore, is that it
does not account for this competition. We have specified a
separate model that includes parameters for transitions
between colonization with each of the most common 27 sero-
types and for the capacity of each serotype to resist displace-
ment, and we have resolved these through maximum
likelihood on the present data [36]. The transition rates in that
model, expressed as acquisition among uncolonized individu-
als and clearance to no colonization, are highly correlated
with the present results [36].

A further constraint of the present design is its assumption
that a child is only colonized with a single serotype of pneumo-
coccus. Studies of multiple colonization have suggested that
10%–38% of children can be colonized with >1 strain simultane-
ously [37, 38]. Given the size of the present study and the lack of
sensitive methods to determine multiple-serotype carriage at the

Table 2. Pneumococcal Acquisition, Carriage Duration, and Clearance, by Serotype

Serotype Carriers, No.a
Clearance Rate,

Episodes/Day (95% CI)
Carriage Duration,

Days, Mean (95% CI)
Acquisition Rate,

Episodes/Day (95% CI)

19F 283 0.0198 (.0077–.0509) 50.5 (19.7–130) 0.0022 (.0008–.0057)
6A 237 0.0197 (.0076–.0506) 50.8 (19.7–131) 0.0018 (.0007–.0047)

6B 184 0.0216 (.0083–.0563) 46.3 (17.8–120) 0.0015 (.0006–.0039)

23F 117 0.0313 (.0120–.0821) 31.9 (12.2–83.5) 0.0013 (.0005–.0036)
11A 90 0.0278 (.0106–.0728) 36.0 (13.7–94.4) 0.0009 (.0003–.0024)

14 85 0.0392 (.0149–.1032) 25.5 (9.7–67.2) 0.0012 (.0004–.0033)

35B 84 0.0339 (.0128–.0894) 29.5 (11.2–77.9) 0.0010 (.0004–.0028)
23B 70 0.0286 (.0108–.0757) 35.0 (13.2–92.8) 0.0007 (.0003–.0020)

10A 56 0.0344 (.0128–.0924) 29.1 (10.8–77.9) 0.0007 (.0002–.0019)
15B 54 0.0554 (.0206–.1489) 18.1 (6.7–48.6) 0.0011 (.0004–.0030)

19A 53 0.0492 (.0182–.1332) 20.3 (7.5–55.1) 0.0009 (.0003–.0026)

9V 51 0.0442 (.0164–.1191) 22.6 (8.4–60.9) 0.0008 (.0003–.0023)
13 49 0.0430 (.0159–.1164) 23.3 (8.6–63.0) 0.0008 (.0003–.0021)

15A 49 0.0356 (.0132–.0962) 28.1 (10.4–76.0) 0.0006 (.0002–.0018)

15C 43 0.0547 (.0201–.1484) 18.3 (6.7–49.6) 0.0008 (.0003–.0024)
34 38 0.0444 (.0163–.1213) 22.5 (8.2–61.5) 0.0006 (.0002–.0017)

3 34 0.0951 (.0344–.2635) 10.5 (3.8–29.1) 0.0012 (.0004–.0034)

16F 34 0.0539 (.0194–.1500) 18.6 (6.7–51.5) 0.0007 (.0002–.0019)
18C 29 0.0547 (.0198–.1513) 18.3 (6.6–50.6) 0.0006 (.0002–.0017)

19B 25 0.0414 (.0146–.1174) 24.2 (8.5–68.4) 0.0004 (.0001–.0011)

7C 23 0.0598 (.0207–.1732) 16.7 (5.8–48.4) 0.0005 (.0002–.0015)
20 21 0.0971 (.0330–.2859) 10.3 (3.5–30.3) 0.0007 (.0002–.0023)

23A 19 0.0429 (.0147–.1251) 23.3 (8.0–67.9) 0.0003 (.0001–.0009)

21 18 0.0366 (.0121–.1108) 27.3 (9.0–82.6) 0.0002 (.0001–.0008)
35A 15 0.0529 (.0169–.1657) 18.9 (6.0–59.3) 0.0003 (.0001–.0010)

1 13 0.1094 (.0567–.2109) 9.1 (4.7–17.6) 0.0005 (.0002–.0012)

33B 13 0.1488 (.0455–.4860) 6.7 (2.1–22.0) 0.0007 (.0002–.0025)
4 12 0.0611 (.0186–.2005) 16.4 (5.0–53.7) 0.0003 (.0001–.0010)

Abbreviation: CI, confidence interval.
a Data exclude 69 individuals who were colonized with serotypes that were observed too infrequently to permit estimation of clearance and acquisition rates [25].
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Figure 4. Rates of clearance and acquisition of pneumococcal colonization by serotype. Point estimates for serotypes contained in the 10-valent
pneumococcal conjugate vaccine (PCV-10) are shown with open circles; those contained in the 13-valent vaccine (PCV-13) but not in the 10-valent
vaccine are shown with half circles. Abbreviation: CI, confidence interval.

Figure 3. Rates of clearance of pneumococcal colonization by age, for immune and total clearance. Whiskers denote 95% confidence intervals.
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outset, this simplifying assumption was unavoidable. In catego-
rizing data, we may therefore have defined a carriage episode as
terminated (by the presence of another serotype) when the orig-
inal serotype was still present in low numbers. This would lead
us to underestimate the duration of carriage and to overestimate
the rates of acquisition. At the beginning of the observed epi-
sodes, we may have detected a serotype from a stable minority
population that was rapidly “replaced” in subsequent swabs by
our detection of the dominant serotype. Such observations
would substantially exaggerate the observed rate of clearance
and the calculated rate of acquisition.

Failure to account for competition and multiple serotype
colonization is likely to affect our estimates of less competitive
(and therefore less common) serotypes disproportionately.
Indeed, the more common the serotype in this study, the
closer the correlation was with directly observed acquisition
rates (Figure 5), and the correlation for the commonest 28 se-
rotypes was high (r = 0.87).

By using quantitative molecular methods, several studies
have identified a gradient in pneumococcal carriage density
and an association between invasive disease and high naso-
pharyngeal load [39, 40]. Colonization density may also affect
the probability of transmission between individuals. We did
not measure colonization density, but the results do reflect the
sensitivity of nasopharyngeal sampling, which is likely to be
affected by colonization load [41].

For the 28 most common serotypes, clearance rates were in-
versely correlated with prevalence, and the increase in

pneumococcal clearance rates with age closely reflected a de-
creased prevalence with age. These observations suggest that
prevalence both of pneumococci and of individual serotypes is
strongly determined by the rate of clearance in the nasophar-
ynx. Serotype-specific acquisition rates were very strongly cor-
related with prevalence, and again the most plausible direction
for this association is that acquisition is a function of exposure
and that exposure is a direct function of the population preva-
lence. The finding that colonization prevalence, but not acqui-
sition rate, declines with age is consistent with the fact that
the acquisition experience of any one child, regardless of age,
is determined by the mean prevalence in the population,
which does not vary. The pattern of associations between
clearance and acquisition rates with prevalence—by age and
by serotype—suggest that carriage prevalence is maintained by
the host clearance rate and that the acquisition rate is deter-
mined by the opportunity for exposure expressed as popula-
tion prevalence.

We have reported a large carriage study that used an epide-
miologically efficient design to obtain serotype-specific rates of
acquisition and clearance and serotype-specific prevalence in a
well-defined population of Kenyan children. With the excep-
tion of intraspecies competition, this study has provided a
credible description of the major forces driving transmission
and prevalence of the commonest 28 serotypes: acquisition is
strongly determined by prevalence, and prevalence in turn is
determined by the clearance rate. Immune maturation with
age increases clearance rates and reduces prevalence.

Figure 5. Scatterplot and line of equality for acquisition rates estimated in 2 different studies in Kilifi. The illustration shows the scatter of acquisition
rates of the most frequently observed 28 serotypes directly measured in newborns (age, 0–3 months) against the acquisition rates among children aged
3–59 months calculated in the present study. r = 0.78; P < .00005.
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The serotype-specific rates also provide baseline estimates to
investigate the likely indirect effects of multivalent pneumococ-
cal conjugate vaccines. First, comparison of serotype-specific
acquisition rates with matched rates of invasive pneumococcal
disease could provide a valid estimate of pneumococcal
“attack rates” [21, 22]. This highlights the circulating serotypes
that have the greatest potential to cause serotype replacement
disease. The prevalence and the rate of acquisition can be used
to estimate the force of infection required for population mod-
eling of transmission, which, when combined with the attack
rates, creates a population model of disease. Given that the 10-
valent pneumococcal conjugate vaccine has recently been in-
troduced into the study setting, these data provide a baseline
against which to test the usefulness of carriage observations in
predicting and understanding the impact of vaccine on the
prevalence and acquisition of nonvaccine serotypes and the
risk of serotype replacement disease.
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