569 research outputs found

    Role of salicylic acid in acclimation to low temperature

    Get PDF
    Low temperature is one of the most important limiting factors for plant growth throughout the world. Exposure to low temperature may cause various phenotypic and physiological symptoms, and may result in oxidative stress, leading to loss of membrane integrity and to the impairment of photosynthesis and general metabolic processes. Salicylic acid (SA),phenolic compound produced by a wide range of plant species, a may participate in many physiological and metabolic reactions in plants. It has been shown that exogenous SA may provide protection against low temperature injury in various plant species, while various stress factors may also modify the synthesis and metabolism of SA. In the present review, recent results on the effects of SA and related compounds in processes leading to acclimation to low temperatures will be discussed

    Pseudoclavibacter-like subcutaneous infection: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Arthrobacter</it>-like organisms, including <it>Pseudoclavibacter </it>organisms, have rarely been documented as being responsible for infection in humans.</p> <p>Case presentation</p> <p>An 81-year-old French man developed a subcutaneous infection despite antibiotic treatment combining clindamycin and metronidazole for chronic wound infection. A skin biopsy showed numerous polymorphonuclear cells and no bacteria, but a subcutaneous swab yielded numerous polymorphonuclear cells, a few Gram-positive cocci, Gram-negative cocci, and Gram-positive rods. The Gram-positive rod sequence exhibited 99% sequence similarity with uncultured <it>Pseudoclavibacter </it>sp. [GenBank:<ext-link ext-link-id="EF419350" ext-link-type="gen">EF419350</ext-link>] and 99% sequence similarity with uncultured <it>Pseudoclavibacter </it>sp. [GenBank:<ext-link ext-link-id="EF419347" ext-link-type="gen">EF419347</ext-link>]. The genetic data and unique peptide profile of this <it>Pseudoclavibacter</it>-like isolate, determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry, underscored its uniqueness.</p> <p>Conclusions</p> <p><it>Pseudoclavibacter</it>-like organisms are identifiable in cutaneous and subcutaneous infections in humans.</p

    Deep neural network or dermatologist?

    Full text link
    Deep learning techniques have proven high accuracy for identifying melanoma in digitised dermoscopic images. A strength is that these methods are not constrained by features that are pre-defined by human semantics. A down-side is that it is difficult to understand the rationale of the model predictions and to identify potential failure modes. This is a major barrier to adoption of deep learning in clinical practice. In this paper we ask if two existing local interpretability methods, Grad-CAM and Kernel SHAP, can shed light on convolutional neural networks trained in the context of melanoma detection. Our contributions are (i) we first explore the domain space via a reproducible, end-to-end learning framework that creates a suite of 30 models, all trained on a publicly available data set (HAM10000), (ii) we next explore the reliability of GradCAM and Kernel SHAP in this context via some basic sanity check experiments (iii) finally, we investigate a random selection of models from our suite using GradCAM and Kernel SHAP. We show that despite high accuracy, the models will occasionally assign importance to features that are not relevant to the diagnostic task. We also show that models of similar accuracy will produce different explanations as measured by these methods. This work represents first steps in bridging the gap between model accuracy and interpretability in the domain of skin cancer classification

    Cold hardening protects cereals from oxidative stress and necrotrophic fungal pathogenesis

    Get PDF
    The effects of cold hardening of cereals on their cross-tolerance to treatments leading to oxidative stress were investigated. Long-term exposure to low non-freezing temperatures provided partial protection to wheat and barley plants from the damage caused by paraquat and hydrogen peroxide treatments. It also conferred resistance in two barley cultivars to the necrotic symptoms and growth of the fungal phytopathogen Pyrenophora teres f. teres . Pathogen-induced oxidative burst was also reduced in cold hardened plants. The possible roles of host-derived redox factors and other signaling components in the observed forms of cereal cross-tolerance are discussed

    Ultrashort spin–orbit torque generated by femtosecond laser pulses

    Get PDF
    To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin–orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin–orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Interdependencies between Leverage and Capital Ratios in the Banking Sector of the Czech Republic

    Get PDF
    In this paper we discuss the implications of the Basel III requirements on the leverage ratio for the banking sector in the Czech Republic. We identify the potential binding constraints from regulatory limits and analyze the interactions among leverage and capital ratios over the country’s economic cycle (during the period 2007-2014). The historical data confirm stronger capital ratios of the banks and an overall solid leverage level with only 5% of the total historical observations being lower than the regulatory recommendations. By analyzing the components of ratios, we conclude that the banks are focusing more on the optimization of risk weighted assets. Strong co-movement patterns between leverage and assets point to the active management of leverage as a means of expanding and contracting the size of balance sheets and maximizing the utility of the capital. The analysis of correlation patterns among the variables indicates that the total assets (and exposure) in contrast to Tier 1 capital are the main contributors to the cyclical movements in the leverage. The leverage and the total assets also demonstrate a weak correlation with GDP, but a strong co-movement with loans to the private sector

    Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs

    Get PDF
    Antiferromagnets offer spintronic device characteristics unparalleled in ferromagnets owing to their lack of stray fields, THz spin dynamics, and rich materials landscape. Microscopic imaging of antiferromagnetic domains is one of the key prerequisites for understanding physical principles of the device operation. However, adapting common magnetometry techniques to the dipolar-field-free antiferromagnets has been a major challenge. Here we demonstrate in a collinear antiferromagnet a thermoelectric detection method by combining the magneto-Seebeck effect with local heat gradients generated by scanning far-field or near-field techniques. In a 20-nm epilayer of uniaxial CuMnAs we observe reversible 180∘ switching of the Néel vector via domain wall displacement, controlled by the polarity of the current pulses. We also image polarity-dependent 90∘ switching of the Néel vector in a thicker biaxial film, and domain shattering induced at higher pulse amplitudes. The antiferromagnetic domain maps obtained by our laboratory technique are compared to measurements by the established synchrotron-based technique of x-ray photoemission electron microscopy using x-ray magnetic linear dichroism
    corecore