329 research outputs found

    A Study of the Shear Response of a Lead-Free Composite Solder by Experimental and Homogenization Techniques

    Get PDF
    The current study proposes a combined experimental and modeling approach to characterize the mechanical response of composite lead-free solders. The influence of the reinforcement volume fraction on the shear response of the solder material in the joint is assessed. A novel optimized geometry for single lap shear specimens is proposed. This design minimizes the effect of plastic strain localization, leading to a significant improvement of the quality of experimental data. The constitutive model of the solder material is numerically identified from the load-displacement response of the joint by using inverse finite element identification. Experimental results for a composite solder with 0.13 reinforcement volume fraction indicate that the presence of the reinforcement leads to a 23% increase of the ultimate stress and a 50% decrease of the ultimate strain. To interpret experimental data and predict the elastoplastic response of the composite solder for varying particle volume fraction, a three-dimensional (3D) homogenization model is employed. The agreement between experiments and homogenization results leads to the conclusion that the increase in the ultimate strength and the decrease in ductility are to be attributed to load sharing between matrix material and particles with the development of a significant triaxial stress state which restricts plastic flow in the matri

    Interfacial Intermetallic Growth and Strength of Composite Lead-Free Solder Alloy Through Isothermal Aging

    Get PDF
    The effects of particle reinforcement of Sn-4.0wt.%Ag-0.5wt.%Cu (SAC405) lead-free solder on interfacial intermetallic layer growth and strength of the ensuing joints through short-term isothermal aging (150°C) were studied. Composite solders were prepared by either incorporating 2wt.% Cu (3ÎŒm to 20ÎŒm) or Cu2O (∌150nm) particles into SAC405 paste. Aggressive flux had the effect of reducing the Cu2O nanoparticles into metallic Cu which subsequently reacted with the solder alloy to form the Cu6Sn5 intermetallic. While all solders had similar interfacial intermetallic growth upon reflow, both of the composite solders' growth rates slowed through aging to reach a common growth rate exponent of approximately 0.38, considerably lower than that of the nonreinforced solder (n=0.58). The nanoscale reinforced solder additionally exhibited the highest tensile strength in both the initial and aged conditions, behavior also attributed to its quick conversion to a stable microstructur

    An elastoplastic three-dimensional homogenization model for particle reinforced composites

    Get PDF
    A model for the homogenization of the elastoplastic properties of particle reinforced composites is proposed. The microstructure is described by means of a novel technique, consisting of generating particles in a pre-existent constrained Delaunay tetrahedralization of a cubic volume by means of a modified random adsorption algorithm. This technique allows generating models with different amounts of reinforcement by using the same finite element mesh. The obtained particle morphology is similar to that of many ceramic powders often used as reinforcement. Homogenization is carried out for a typical particle reinforced metal matrix composite with reinforcement volume fractions up to 0.25 and the representative volume element size is assessed for both elastic and elastoplastic behaviours. In this latter case the representative volume element size depends on the amount of plastic strain which develops in the matrix material and a criterion to assess the model representativeness is proposed based on the amount of elastic energy stored in the composite. The predictions of the model compare well with pertinent experimental data reported in the literature. (c) 2007 Elsevier B.V. All rights reserved

    Interfacial Design for Joining Technologies: An Historical Perspective

    Get PDF
    This paper gives an historic perspective of the concept of "Interfacial Design” in joined (e.g. soldered, brazed, diffusion bonded) assemblies. During the course of history, the awareness grew that the interface in a material joint can be perceived at different length scales. With the continuing development of joining materials and technologies, it became evident that the performance of assemblies is critically dependent on the structure and composition of the multiple internal interfaces in the material joints. Resulting trends in the microstructural design of soldering, brazing, and other bonding materials by smart engineering of internal interfaces, as driven by increasingly complex technological requirements, are briefly addressed

    The use of social network analysis to describe the effect of immune activation on group dynamics in pigs

    Get PDF
    The immune system can influence social motivation with potentially dire consequences for group-housed production animals, such as pigs. The aim of this study was to test the effect of a controlled immune activation in group-housed pigs, through an injection with lipopolysaccharide (LPS) and an intervention with ketoprofen on centrality parameters at the individual level. In addition, we wanted to test the effect of time relative to the injection on general network parameters in order to get a better understanding of changes in social network structures at the group level. 52 female pigs (11-12 weeks) were allocated to four treatments, comprising two injections: ketoprofen-LPS (KL), ketoprofen-saline (KS), saline-LPS (SL) and saline-saline (SS). Social behaviour with a focus on damaging behaviour was observed continuously in 10 x 15 min bouts between 0800 am and 1700 pm 1 day before (baseline) and two subsequent days after injection. Activity was scan-sampled every 5 min for 6 h after the last injection in the pen. Saliva samples were taken for cortisol analysis at baseline and at 4, 24, 48, 72 h after the injections. A controlled immune activation affected centrality parameters for ear manipulation networks at the individual level. Lipopolysaccharide-injected pigs had a lower in-degree centrality, thus, received less interactions, 2 days after the challenge. Treatment effects on tail manipulation and fighting networks were not observed at the individual level. For networks of manipulation of other body parts, in-degree centrality was positively correlated with cortisol response at 4 h and lying behaviour in the first 6 h after the challenge in LPS-injected pigs. Thus, the stronger the pigs reacted to the LPS, the more interactions they received in the subsequent days. The time in relation to injection affected general network parameters for ear manipulation and fighting networks at the group level. For ear manipulation networks, in -degree centralisation was higher on the days following injection, thus, certain individuals in the pen received more interactions than the rest of the group compared to baseline. For fighting networks, betweenness decreased on the first day after injection compared to baseline, indicating that network connectivity increased after the challenge. Networks of tail manipulation and manipulation of other body parts did not change on the days after injection at the group level. Social network analysis is a method that can potentially provide important insights into the effects of sickness on social behaviour in group-housed pigs. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Factors affecting mechanical (nociceptive) thresholds in piglets

    Get PDF
    AbstractObjectiveTo evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer.Study designDescriptive, prospective cohort.AnimalsForty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age.MethodsMechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data.ResultsVariance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week.Conclusions and Clinical relevanceRepeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and clinical settings

    A Study of the Shear Response of a Lead-Free Composite Solder by Experimental and Homogenization Techniques

    Get PDF
    The current study proposes a combined experimental and modeling approach to characterize the mechanical response of composite lead-free solders. The influence of the reinforcement volume fraction on the shear response of the solder material in the joint is assessed. A novel optimized geometry for single lap shear specimens is proposed. This design minimizes the effect of plastic strain localization, leading to a significant improvement of the quality of experimental data. The constitutive model of the solder material is numerically identified from the load-displacement response of the joint by using inverse finite element identification. Experimental results for a composite solder with 0.13 reinforcement volume fraction indicate that the presence of the reinforcement leads to a 23% increase of the ultimate stress and a 50% decrease of the ultimate strain. To interpret experimental data and predict the elastoplastic response of the composite solder for varying particle volume fraction, a three-dimensional (3D) homogenization model is employed. The agreement between experiments and homogenization results leads to the conclusion that the increase in the ultimate strength and the decrease in ductility are to be attributed to load sharing between matrix material and particles with the development of a significant triaxial stress state which restricts plastic flow in the matrix

    Intranasal nanoemulsion vaccine confers long‐lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy

    Full text link
    BackgroundImmunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen‐specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2‐4 monthly administrations. Here, we investigate the ability of this technology to provide long‐term modulation of allergy in a murine model of cow’s milk allergy.MethodsSix weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration.ResultsThe NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein‐specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL‐10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow’s milk‐specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine.ConclusionThe sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long‐term suppressive effects on allergic disease without eliminating serum IgE.This study evaluates the ability of an intranasal nanoemulsion‐based vaccine to induce long‐term modulation of allergic reactions in a mouse model of cow’s milk allergy. Intranasal immunization with nanoemulsion adjuvant suppresses Th2 responses and anaphylaxis. The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/1/all14064_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/2/all14064.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154959/3/all14064-sup-0003-FigS3.pd

    Interfacial intermetallic growth and strength of composite lead-free solder alloy through isothermal aging

    Get PDF
    The effects of particle reinforcement of Sn-4.0wt.%Ag-0.5wt.%Cu (SAC405) lead-free solder on interfacial intermetallic layer growth and strength of the ensuing joints through short-term isothermal aging (150 degrees C) were studied. Composite solders were prepared by either incorporating 2 wt.% Cu (3 mu m to 20 mu m) or Cu2O (similar to 150 nm) particles into SAC405 paste. Aggressive flux had the effect of reducing the Cu2O nanoparticles into metallic Cu which subsequently reacted with the solder alloy to form the Cu6Sn5 intermetallic. While all solders had similar interfacial intermetallic growth upon reflow, both of the composite solders' growth rates slowed through aging to reach a common growth rate exponent of approximately 0.38, considerably lower than that of the nonreinforced solder (n = 0.58). The nanoscale reinforced solder additionally exhibited the highest tensile strength in both the initial and aged conditions, behavior also attributed to its quick conversion to a stable microstructure

    Nasal Immunization with a Recombinant HIV gp120 and Nanoemulsion Adjuvant Produces Th1 Polarized Responses and Neutralizing Antibodies to Primary HIV Type 1 Isolates

    Full text link
    ABSTRACT Epidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice. The serum of these animals demonstrated antibodies that cross-reacted with heterologous serotypes of gp120 and had significant neutralizing activity against two clade-B laboratory strains of HIV (HIVBaL and HIVSF162) and five primary HIV-1 isolates. The analysis of gp120-specific CTL proliferation, INF-Îł induction, and prevalence of anti-gp120 IgG2 subclass antibodies indicated that nasal vaccination in NE also induced systemic, Th1-polarized cellular immune responses. This study suggests that NE should be evaluated as a mucosal adjuvant for multivalent HIV vaccines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63251/1/aid.2007.0148.pd
    • 

    corecore