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This paper gives an historic perspective of the concept of ‘‘Interfacial Design’’ in joined (e.g. soldered,
brazed, diffusion bonded) assemblies. During the course of history, the awareness grew that the interface in
a material joint can be perceived at different length scales. With the continuing development of joining
materials and technologies, it became evident that the performance of assemblies is critically dependent on
the structure and composition of the multiple internal interfaces in the material joints. Resulting trends in
the microstructural design of soldering, brazing, and other bonding materials by smart engineering of
internal interfaces, as driven by increasingly complex technological requirements, are briefly addressed.
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1. Introduction

Interfaces of multi-phase materials and their assemblies
(e.g., hetero-interfaces, phase boundaries, grain boundaries, and
free surfaces) impose dimensional and microstructural con-
strains to the mobility of atoms, single defects, dislocations,
electrons, photons, phonons, and plasmons. Hence, the local
atom arrangement, defect structure, and coherency strain at
internal interfaces are decisive for tuning the functional (e.g.,
mechanical, electrical, magnetic, thermal, or optical) properties
of components and devices: see Ref 1-5 and references therein.
Particularly in nano-structured materials, such as thin film
systems and nano-composites, a relatively large volume
fraction of atoms is associated with internal interfaces, which
often results in ‘‘unusual’’ materials properties, which are
different from those of the corresponding bulk material(s): e.g.,
an ultra-high yield strength, superparamagnetism, high catalytic
activity, size-dependent optical properties, and/or a strikingly
lower (pre-melting) or higher (superheating) melting point
(Ref 6).

In addition, in nano-structured materials, the excess energies
associated with internal interfaces often dominate the energetics

of the system: i.e., a high density of internal interfaces typically
increases the total Gibbs energy of the system (Ref 7), thereby
providing large driving forces for microstructural and interfa-
cial transformations, such as interfacial segregation, wetting,
complexion transition, reconstruction, intermixing and com-
pound formation. In addition, the relatively short diffusion
distances, often in combination with enhanced diffusion rates of
atoms along internal interfaces, enable much faster kinetics for
thermodynamic equilibration, which makes artificially, man-
made nanostructured components and nano-devices very prone
to degradation (Ref 8-10).

Evidently, tailoring the properties (including the chemical
and mechanical stability) of internal interfaces is of cardinal
importance in numerous technologies in the fields of, e.g.,
mechanical engineering, microelectronics, nano-photonics,
catalysis, photovoltaics, and sensing devices.

In the field of traditional joining technologies (e.g.,
brazing, soldering, diffusion bonding), it has also long been
recognized that the performance of a material joint critically
depends on the microstructure of the ‘‘macroscopic’’ interface,
as conceived by the brazed zone in between the parent joining
materials. However, such a ‘‘macroscopic’’ perception disre-
gards the presence of multiple internal interfaces, such as
grain and phase boundaries, within the brazed zone, which
actually govern the properties of the material joint. Until the
present date, the concept of interfacial design (or interface
engineering) at various length scales for tailoring the prop-
erties of a material joint is often still not envisioned as an
integral and crucial part of joint manufacturing. Only in recent
days, due to the continuing miniaturization of material
components in modern nano-technologies (e.g. micro-elec-
tronics, medical implants, microelectromechanical systems and
sensing devices), interfacial design is becoming a crucial task
for integrating, packaging and assembling increasingly com-
plex nano- and microscale materials and components at ever-
lower temperatures (Ref 11). In particular, smart design (or
engineering) of the local composition and structure of the
internal interfaces in nano- and microscale systems is needed
to allow faster and more reliable fabrication, continuing
miniaturization, further cost reduction, and enhanced durabil-
ity during service.

This article is an invited submission to JMEP selected from
presentations at the Symposia ‘‘Wetting,’’ ‘‘Interface Design,’’ and
‘‘Joining Technologies�� belonging to the Topic ‘‘Joining and Interface
Design’’ at the European Congress and Exhibition on Advanced
Materials and Processes (EUROMAT 2013), held September 8-13,
2013, in in Sevilla, Spain, and has been expanded from the original
presentation.

J. Janczak-Rusch and L.P.H. Jeurgens, Laboratory for Joining
Technologies and Corrosion, Empa, Swiss Federal Laboratories for
Materials Science and Technology, 8600 Dübendorf, Switzerland; and
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With the aim to face the aforementioned technological
challenge, the current authors initiated a first symposium on
‘‘Interfacial Design’’ within the ‘‘Joining’’ topic at the Euromat
2013 conference. The initiative follows similar trends in other
conference series, such as the International Conference on
Brazing, Diffusion Bonding and High Temperature Brazing,
which also organized a first session on Nanotechnology in
2013. Noteworthy, a new conference series on the topic of
Nano- and Microjoining has been initiated in 2012 with a
forthcoming conference in 2014 (see www.nmj2014.org).
These scientific progressions in the field of joining are strongly
driven by the industrial demand to control the microstructure of
a material joint with its internal interfaces down to the atomic
scale. In the past, the development of new joining concepts
typically succeeded the first development stages of material and
system design, components manufacturing, and assembly. In
more recent days, with the continuous miniaturization of
functional components, the joining process is becoming more
and more an integrative part of the product development and
manufacturing chain (Ref 12).

2. Interfaces in Material Joints: A Historical
Perspective

Joining is a very ancient technology; first soldering and
brazing technologies are thought to date back to before
4000 BC. Back then as nowadays, the fabrication of a good
joint could only be mastered by establishing a solid bond
between the two material components. A main criterion for a
good joint still is the strength of the chemical bond across the
macro-interface. Some of the first objects manufactured by
joining technologies in ancient history, such as jewelery or
weapons, have lasted until today and can be admired in
archeological museums worldwide. They evidence that, already
in ancient times, humans mastered the joining of all kinds of
dissimilar materials, such as metals, alloys, and glasses.

For a long time, a material joint was understood as a
connection of two materials, separated by a single boundary
plane with invisible or negligible thickness and without any
specific properties. Soon after the invention of different solders
and brazing filler metals (alloys), the awareness grew that the
properties of a material joint can be controlled by smart
selection of the type of the solder or brazing filler. As a result,
increasing attention was paid to the resulting microstructure of
the joined zone between the two base materials. From this time
on, the microstructure and constituents of the macroscopic
interface were studied in more detail. In the case of a brazed
joint, the macro-interface of the joint involves a zone with a
thickness of a few tenths of a millimeter, as constituted by the
reacted brazing filler (the modified brazing filler alloy) in the
center and its reaction zones with the base materials. Similar
concepts were considered for material joints produced by other
metallurgical bonding processes, such as soldering or diffusion
bonding processes. Nevertheless, it was (and still is) often
naively assumed that the interface, as defined by the brazing
zone, possesses similar properties as those of the applied
brazing filler. Furthermore, the quality of a joint was (and still
is) often simply judged on the basis of the size and shape of
visible defects and discontinuities in the brazing zone. Hence
the procedure for the optimization of a given joining process

often still proceeds by a series of trial-and-error joining
experiments with a pre-selection of different brazing filler
materials.

With the development of joints of dissimilar materials with
very different electronic bonding configurations, such as metals
and ceramics, the brazing community recognized that it is not
sufficient to optimize only the applied brazing filler alloy and
its resulting microstructure after joining. To optimize the
properties of the material joint it became more and more
essential to control the contrasting chemical reactions at the
opposing micro-interfaces of the braze with the dissimilar base
materials (see Fig. 1), as tailored by the addition of so-called
(re-)active elements (e.g., Ti, Cr, and Zr).

However, the quality of a brazed metal-ceramic joint not
only relies on strong chemical bonding at the opposing
microinterfaces and, consequently, a good wetting behavior of
the brazing filler with the ceramic (Ref 13-16). The joint quality
also critically depends on the residual stress levels in the brazed
zone, as originating from the characteristically large difference
in thermal expansion coefficients between the metal and the
ceramic (Ref 17-21). Ideally the brazing filler should have a
high plasticity and an intermediate (or even gradient) thermal
expansion coefficient between the metal and the ceramic to
prevent large stress gradients in the joint zone (Ref 21-24).
Unfortunately, such ideal brazing fillers are not always
available and then complex interface engineering is needed to
deal with the large thermal expansion mismatch between the
two base materials. Typical strategies to reduce the stress
gradient in the metal-ceramic joint zone are the application of:
(i) a combination of one or more brazing fillers with a reactive
metallization layer(s) on the ceramic base material (Ref 25-28),
(ii) a succession of interlayers with different thermal expansion
coefficients to more gradually bridge the jump in thermal
expansion coefficient between the metal and the ceramic base
components (Ref 18, 29-31), (iii) composite brazing fillers
(Ref 32-39).

Ceramic-particle-reinforced active brazing fillers are a
typical example of the above mentioned composite brazing
fillers for active brazing of metals to ceramics (Ref 17, 32, 40),
see Fig. 2. Due to the increasing number of internal metal-
ceramic interfaces induced upon addition of (micro-sized)
ceramic particles to the active brazing filler (to tailor both the

Fig. 1 An exemplary metal-ceramic joint: the ‘‘macro-interface’’ of
the joint involves the zone with a thickness of a few tenths of a mil-
limeter, as constituted by the reacted brazing filler (the modified
brazing filler alloy) in the center and its reaction zones with the base
materials. For metal-ceramic joints, the two ‘‘micro-interfaces’’ as
associated with the opposite reaction zones have contrasting chemi-
cal bonding characteristics
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thermal expansion coefficient and the mechanical properties of
the braze), high-quality joints can only be achieved by
increasing the concentration of the active element (here: Ti)
in the brazing filler with respect to the optimum content in the
unreinforced brazing filler (Ref 17, 22, 41). Namely, the active
element is needed to establish firm chemical bonding at all
internal metal-ceramic interfaces, i.e., between the brazing filler
and ceramic base material, as well as between the ceramic
particles and the brazing filler matrix.

Also for metal-metal joints, such as lead-free soldering of
Cu interconnects, it can be beneficial to add nano-sized metallic
particles to the solder to improve the creep resistance (Ref 42-44)
and to optimize the thermo-mechanical fatigue behavior of the
interconnections (Ref 45, 46). For example, if Cu nano-
particles are added to a Sn-Ag-Cu solder when joining Cu
components, the growth of the brittle Cu6Sn5 intermetallic

phase during joint service can be suppressed by the formation
of the Cu6Sn5 around the Cu nano-particles, thus depleting Sn
from the competing reaction with the Cu base material (Ref 45).

Another recent development in interfacial design for joining
technologies is the research on the application of metallic nano-
multilayers (NMLs) systems, e.g., reactive nanofoils as a
potential local heat-source for the joining of heat-sensitive
nano-structured materials and micro-scale devices (Ref 47-56),
as applied in, e.g., microelectronics, packaging, sensors, and
implantable medical devices. Reactive NMLs foils or coatings,
constituted of alternating Ni-Al, Ti-Al, and Pd-Al sublayers
with a thickness in the range of 3-100 nm, as prepared by
conventional magnetron sputtering techniques, are among the
most promising systems for such benign joining technologies.
Thermal activation of the self-propagating chain of exothermic
reactions associated with intermetallic phase formation in the
NMLs results in the very fast release of thermal energy.
Application of reactive NML foils or coatings between two
base components thus enables instantaneously release of local
heat in the vicinity of interface between the contacted base
materials to establish a metallurgical joint, thereby restricting
the heat-affected zone to a few hundreds of micrometers from
the joint line.

Only very recently, a novel design of nanostructured brazing
filler materials was proposed (Ref 57-70), which exploits nano-
effects, like fast interfacial reaction kinetics, grain boundary
wetting, and melting point depression by nano-confinement to
realize brazing at reduced temperatures (as compared to the
brazing temperature for the corresponding bulk brazing alloy).
Representative examples of such joining materials are brazing
pastes from nanoparticles with an intelligent, temporary coating
(Ref 71, 72), and nano-multilayers, constituted of alternating
nanometer-thick layers of a brazing filler metal and a chem-
ically inert barrier (e.g., a nitride, oxide or refractory metal)
(Ref 69, 70) see Fig. 3. Evidently, such nano-effects are
controlled by the local structure, chemical composition, and
properties of the different internal interfaces. Hence interfacial
design is a crucial first step in the development and application
of such novel nano-structured joining materials. For example,
the crucial role of the structure of internal interfaces on melting
behavior was demonstrated for an In nano-particle in an Al

Fig. 2 Metal-ceramic joint (left Si3N4/TiN ceramics, right
14NiCr14 steel), as produced by the application of a ceramic-parti-
cle-reinforced active brazing filler (center AgCuInTi reinforced with
SiC particles)

Fig. 3 Nanomultilayers for joining: multiple internal interfaces between nanometer-thick layers of a typical braze alloy (Ag-Cu; dark) and a
chemically inert barrier layer (AlN, C; bright)
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matrix; a coherent In-Al interface resulted in superheating,
whereas a melting point depression occurred for the non-
coherent In-Al interface (Ref 73). On this foundation (i.e., by
smart interfacial design), strikingly large melting point depres-
sions and very fast reaction kinetics can principally be achieved
in a nanomultilayer configuration (Ref 70).

Some of the challenges which joining technologies are
facing today (e.g., joining at low temperatures, while assuring
operation of the joined assemblies at much higher temperatures)
can only be mastered by exploring such new nano-scale-based
concepts. Hence, a complex design of brazing filler metals and
solders with a high density of smartly engineered internal
interfaces is needed. Each internal interface will contribute to
some extent to the physical and chemical properties (e.g.,
mechanic, thermal, electronic) of the material joint and hence
principally should be tailored (‘‘designed’’) to optimize and/or
functionalize the joint assembly. Unfortunately, interfacial
design down to the atomic scale is far from trivial, particularly
due to the difficulties in controlling the kinetics of competing
reactions (e.g., interdiffusion, intermixing, heterogeneous
nucleation, and growth) at neighboring interfaces, as well as
the developing stress gradients upon heating. For example, for
the joining of base materials coated with nano-multilayers, the
interface reactions in the nano-sized brazing filler (e.g.,
alloying, phase separation), those between the brazing filler
and the barrier layer, as well as those between the brazing filler
and the base materials, have to be controlled, see Fig. 4.

3. Conclusions

The concept of ‘‘Interface Design’’ in joining technologies
has evolved during centuries and is still under discussion.
During the course of history, the awareness grew that the
interface in a material joint can be perceived at different length
scales. With the continuing miniaturization of engineered
components, it became more and more evident that the
performance of material assemblies is critically dependent on
the structure and composition of the multiple internal interfaces
in the joint. Nowadays, a complex design of brazing filler
metals and solders with a high density of smartly engineered
internal interfaces is often needed to meet industrial require-
ments. The various interfaces in nanostructured joining mate-
rials offer us a new degree of freedom for optimization of the
joining process. Each internal interface contributes to some
extent to the physical and chemical properties (e.g., mechanic,

thermal, electronic) of the material joint and therefore should be
tailored (‘‘designed’’) to optimize and/or functionalize the joint
assembly. Unfortunately, such interface design down to the
atomic scale is still far from trivial, particularly due to the
difficulties in controlling the kinetics of competing reactions at
neighboring interfaces and the developing stress gradients upon
heating. The joining community has to face this big challenge.
With this first symposium on Interface Design in Joining,
controlling the structure and properties of interfaces in the joint
should more and more become an integral part of advanced
joining technologies.
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TÁMOP-4.2.2.A-11/1/KONV-2012-0019 project in the frame-
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