7 research outputs found
Support Vector Machine to Detect Hypertension
Development of tools to facilitate diagnosis of some disease such as cancer, cardiovascular, hypertension, diabetes, is of great relevance in the medical field. In this paper, we will present a method based on Support Vector Machine regression model to detect the hypertension based on some risk factors including obesity, stress, systolic and diastolic blood pressure, physical exercises, cigaret consumption and diet lifestyle. Data represents a group of students from the Lebanese universities. After the data pre-processing, two Support Vector Machine models are designed and implemented in order to estimate systolic and diastolic blood pressure. The outcomes of the methods are diastolic and systolic blood pressure. Accurate results have been obtained which proves the effectiveness of the proposed Support Vector Machine for preliminary detection of hypertension
A Machine Learning Approach for Predicting Biochemical Outcome After PSMA-PET-Guided Salvage Radiotherapy in Recurrent Prostate Cancer After Radical Prostatectomy: Retrospective Study
BACKGROUND
Salvage radiation therapy (sRT) is often the sole curative option in patients with biochemical recurrence after radical prostatectomy. After sRT, we developed and validated a nomogram to predict freedom from biochemical failure.
OBJECTIVE
This study aims to evaluate prostate-specific membrane antigen-positron emission tomography (PSMA-PET)-based sRT efficacy for postprostatectomy prostate-specific antigen (PSA) persistence or recurrence. Objectives include developing a random survival forest (RSF) model for predicting biochemical failure, comparing it with a Cox model, and assessing predictive accuracy over time. Multinational cohort data will validate the model's performance, aiming to improve clinical management of recurrent prostate cancer.
METHODS
This multicenter retrospective study collected data from 13 medical facilities across 5 countries: Germany, Cyprus, Australia, Italy, and Switzerland. A total of 1029 patients who underwent sRT following PSMA-PET-based assessment for PSA persistence or recurrence were included. Patients were treated between July 2013 and June 2020, with clinical decisions guided by PSMA-PET results and contemporary standards. The primary end point was freedom from biochemical failure, defined as 2 consecutive PSA rises >0.2 ng/mL after treatment. Data were divided into training (708 patients), testing (271 patients), and external validation (50 patients) sets for machine learning algorithm development and validation. RSF models were used, with 1000 trees per model, optimizing predictive performance using the Harrell concordance index and Brier score. Statistical analysis used R Statistical Software (R Foundation for Statistical Computing), and ethical approval was obtained from participating institutions.
RESULTS
Baseline characteristics of 1029 patients undergoing sRT PSMA-PET-based assessment were analyzed. The median age at sRT was 70 (IQR 64-74) years. PSMA-PET scans revealed local recurrences in 43.9% (430/979) and nodal recurrences in 27.2% (266/979) of patients. Treatment included dose-escalated sRT to pelvic lymphatics in 35.6% (349/979) of cases. The external outlier validation set showed distinct features, including higher rates of positive lymph nodes (47/50, 94% vs 266/979, 27.2% in the learning cohort) and lower delivered sRT doses (<66 Gy in 57/979, 5.8% vs 46/50, 92% of patients; P<.001). The RSF model, validated internally and externally, demonstrated robust predictive performance (Harrell C-index range: 0.54-0.91) across training and validation datasets, outperforming a previously published nomogram.
CONCLUSIONS
The developed RSF model demonstrates enhanced predictive accuracy, potentially improving patient outcomes and assisting clinicians in making treatment decisions
Development and Validation of a Multi-institutional Nomogram of Outcomes for PSMA-PET-Based Salvage Radiotherapy for Recurrent Prostate Cancer.
IMPORTANCE
Prostate-specific antigen membrane positron-emission tomography (PSMA-PET) is increasingly used to guide salvage radiotherapy (sRT) after radical prostatectomy for patients with recurrent or persistent prostate cancer.
OBJECTIVE
To develop and validate a nomogram for prediction of freedom from biochemical failure (FFBF) after PSMA-PET-based sRT.
DESIGN, SETTING, AND PARTICIPANTS
This retrospective cohort study included 1029 patients with prostate cancer treated between July 1, 2013, and June 30, 2020, at 11 centers from 5 countries. The initial database consisted of 1221 patients. All patients had a PSMA-PET scan prior to sRT. Data were analyzed in November 2022.
EXPOSURES
Patients with a detectable post-radical prostatectomy prostate-specific antigen (PSA) level treated with sRT to the prostatic fossa with or without additional sRT to pelvic lymphatics or concurrent androgen deprivation therapy (ADT) were eligible.
MAIN OUTCOMES AND MEASURES
The FFBF rate was estimated, and a predictive nomogram was generated and validated. Biochemical relapse was defined as a PSA nadir of 0.2 ng/mL after sRT.
RESULTS
In the nomogram creation and validation process, 1029 patients (median age at sRT, 70 years [IQR, 64-74 years]) were included and further divided into a training set (nâ=â708), internal validation set (nâ=â271), and external outlier validation set (nâ=â50). The median follow-up was 32 months (IQR, 21-45 months). Based on the PSMA-PET scan prior to sRT, 437 patients (42.5%) had local recurrences and 313 patients (30.4%) had nodal recurrences. Pelvic lymphatics were electively irradiated for 395 patients (38.4%). All patients received sRT to the prostatic fossa: 103 (10.0%) received a dose of less than 66 Gy, 551 (53.5%) received a dose of 66 to 70 Gy, and 375 (36.5%) received a dose of more than 70 Gy. Androgen deprivation therapy was given to 325 (31.6%) patients. On multivariable Cox proportional hazards regression analysis, pre-sRT PSA level (hazard ratio [HR], 1.80 [95% CI, 1.41-2.31]), International Society of Urological Pathology grade in surgery specimen (grade 5 vs 1+2: HR, 2.39 [95% CI, 1.63-3.50], pT stage (pT3b+pT4 vs pT2: HR, 1.91 [95% CI, 1.39-2.67]), surgical margins (R0 vs R1+R2+Rx: HR, 0.60 [95% CI, 0.48-0.78]), ADT use (HR, 0.49 [95% CI, 0.37-0.65]), sRT dose (>70 vs â€66 Gy: HR, 0.44 [95% CI, 0.29-0.67]), and nodal recurrence detected on PSMA-PET scans (HR, 1.42 [95% CI, 1.09-1.85]) were associated with FFBF. The mean (SD) nomogram concordance index for FFBF was 0.72 (0.06) for the internal validation cohort and 0.67 (0.11) in the external outlier validation cohort.
CONCLUSIONS AND RELEVANCE
This cohort study of patients with prostate cancer presents an internally and externally validated nomogram that estimated individual patient outcomes after PSMA-PET-guided sRT
Using genetic algorithms to systematically identify co-regulated genes networks
Lâobjectif de ce travail est de mettre au point une nouvelle approche automatique pour identifier les rĂ©seaux de gĂšnes concourant Ă une mĂȘme fonction biologique. Ceci permet une meilleure comprĂ©hension des phĂ©nomĂšnes biologiques et notamment des processus impliquĂ©s dans les maladies telles que les cancers. DiffĂ©rentes stratĂ©gies ont Ă©tĂ© dĂ©veloppĂ©es pour essayer de regrouper les gĂšnes dâun organisme selon leurs relations fonctionnelles : gĂ©nĂ©tique classique et gĂ©nĂ©tique molĂ©culaire. Ici, nous utilisons une propriĂ©tĂ© connue des rĂ©seaux de gĂšnes fonctionnellement liĂ©s Ă savoir que ces gĂšnes sont gĂ©nĂ©ralement co-rĂ©gulĂ©s et donc co-exprimĂ©s. Cette co-rĂ©gulation peut ĂȘtre mise en Ă©vidence par des mĂ©ta-analyses de donnĂ©es de puces Ă ADN (micro-arrays) telles que Gemma ou COXPRESdb. Dans un travail prĂ©cĂ©dent [Al Adhami et al., 2015], la topologie dâun rĂ©seau de co-expression de gĂšnes a Ă©tĂ© caractĂ©risĂ© en utilisant deux paramĂštres de description des rĂ©seaux qui discriminent des groupes de gĂšnes sĂ©lectionnĂ©s alĂ©atoirement (modules alĂ©atoires, RM) de groupes de gĂšnes avec des liens fonctionnels connus (modules fonctionnels, FM), câest-Ă -dire des gĂšnes appartenant au mĂȘme processus biologique GO. Dans le prĂ©sent travail, nous avons cherchĂ© Ă gĂ©nĂ©raliser cette approche et Ă proposer une mĂ©thode, appelĂ©e TopoFunc, pour amĂ©liorer lâannotation existante de la fonction gĂ©nique. Nous avons dâabord testĂ© diffĂ©rents descripteurs topologiques du rĂ©seau de co-expression pour sĂ©lectionner ceux qui identifient le mieux des modules fonctionnels. Puis, nous avons constituĂ© une base de donnĂ©es rassemblant des modules fonctionnels et alĂ©atoires, pour lesquels, sur la base des descripteurs sĂ©lectionnĂ©s, nous avons construit un modĂšle de discrimination LDA [Friedman et al., 2001] permettant, pour un sous-ensemble de gĂšnes donnĂ©, de prĂ©dire son type (fonctionnel ou non). BasĂ©e sur la mĂ©thode de similaritĂ© de gĂšnes travaillĂ©e par Wang et ses collĂšgues [Wang et al., 2007], nous avons calculĂ© un score de similaritĂ© fonctionnelle entre les gĂšnes dâun module. Nous avons combinĂ© ce score avec celui du modĂšle LDA dans une fonction de fitness implĂ©mentĂ© dans un algorithme gĂ©nĂ©tique (GA). Ă partir du processus biologique dâontologie de gĂšnes donnĂ© (GO-BP), AG visait Ă Ă©liminer les gĂšnes faiblement co-exprimĂ©s avec la plus grande clique de GO-BP et Ă ajouter des gĂšnes «amĂ©liorant» la topologie et la fonctionnalitĂ© du module. Nous avons testĂ© TopoFunc sur 193 GO-BP murins comprenant 50-100 gĂšnes et avons montrĂ© que TopoFunc avait agrĂ©gĂ© un certain nombre de nouveaux gĂšnes avec le GO-BP initial tout en amĂ©liorant la topologie des modules et la similaritĂ© fonctionnelle. Ces Ă©tudes peuvent ĂȘtre menĂ©es sur plusieurs espĂšces (homme, souris, rat, et possiblement poulet et poisson zĂšbre) afin dâidentifier des modules fonctionnels conservĂ©s au cours de lâĂ©volution.The aim of this work is to develop a new automatic approach to identify networks of genes involved in the same biological function. This allows a better understanding of the biological phenomena and in particular of the processes involved in diseases such as cancers. Various strategies have been developed to try to cluster genes of an organism according to their functional relationships : classical genetics and molecular genetics. Here we use a well-known property of functionally related genes mainly that these genes are generally co-regulated and therefore co-expressed. This co-regulation can be detected by microarray meta-analyzes databases such as Gemma or COXPRESdb. In a previous work [Al Adhami et al., 2015], the topology of a gene coexpression network was characterized using two description parameters of networks that discriminate randomly selected groups of genes (random modules, RM) from groups of genes with known functional relationship (functional modules, FM), e.g. genes that belong to the same GO Biological Process. We first tested different topological descriptors of the co-expression network to select those that best identify functional modules. Then, we built a database of functional and random modules for which, based on the selected descriptors, we constructed a discrimination model (LDA)[Friedman et al., 2001] allowing, for a given subset of genes, predict its type (functional or not). Based on the similarity method of genes worked by Wang and co-workers [Wang et al., 2007], we calculated a functional similarity score between the genes of a module. We combined this score with that of the LDA model in a fitness function implemented in a genetic algorithm (GA). Starting from a given Gene Ontology Biological Process (GO-BP), AG aimed to eliminate genes that were weakly coexpressed with the largest clique of the GO-BP and to add genes that "improved" the topology and functionality of the module. We tested TopoFunc on the 193 murine GO-BPs comprising 50-100 genes and showed that TopoFunc aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. These studies can be conducted on several species (humans, mice, rats, and possibly chicken and zebrafish) to identify functional modules preserved during evolution
Utilisation d'algorithmes génétiques pour l'identification systématique de réseaux de gÚnes co-régulés.
The aim of this work is to develop a new automatic approach to identify networks of genes involved in the same biological function. This allows a better understanding of the biological phenomena and in particular of the processes involved in diseases such as cancers. Various strategies have been developed to try to cluster genes of an organism according to their functional relationships : classical genetics and molecular genetics. Here we use a well-known property of functionally related genes mainly that these genes are generally co-regulated and therefore co-expressed. This co-regulation can be detected by microarray meta-analyzes databases such as Gemma or COXPRESdb. In a previous work [Al Adhami et al., 2015], the topology of a gene coexpression network was characterized using two description parameters of networks that discriminate randomly selected groups of genes (random modules, RM) from groups of genes with known functional relationship (functional modules, FM), e.g. genes that belong to the same GO Biological Process. We first tested different topological descriptors of the co-expression network to select those that best identify functional modules. Then, we built a database of functional and random modules for which, based on the selected descriptors, we constructed a discrimination model (LDA)[Friedman et al., 2001] allowing, for a given subset of genes, predict its type (functional or not). Based on the similarity method of genes worked by Wang and co-workers [Wang et al., 2007], we calculated a functional similarity score between the genes of a module. We combined this score with that of the LDA model in a fitness function implemented in a genetic algorithm (GA). Starting from a given Gene Ontology Biological Process (GO-BP), AG aimed to eliminate genes that were weakly coexpressed with the largest clique of the GO-BP and to add genes that "improved" the topology and functionality of the module. We tested TopoFunc on the 193 murine GO-BPs comprising 50-100 genes and showed that TopoFunc aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. These studies can be conducted on several species (humans, mice, rats, and possibly chicken and zebrafish) to identify functional modules preserved during evolution.Lâobjectif de ce travail est de mettre au point une nouvelle approche automatique pour identifier les rĂ©seaux de gĂšnes concourant Ă une mĂȘme fonction biologique. Ceci permet une meilleure comprĂ©hension des phĂ©nomĂšnes biologiques et notamment des processus impliquĂ©s dans les maladies telles que les cancers. DiffĂ©rentes stratĂ©gies ont Ă©tĂ© dĂ©veloppĂ©es pour essayer de regrouper les gĂšnes dâun organisme selon leurs relations fonctionnelles : gĂ©nĂ©tique classique et gĂ©nĂ©tique molĂ©culaire. Ici, nous utilisons une propriĂ©tĂ© connue des rĂ©seaux de gĂšnes fonctionnellement liĂ©s Ă savoir que ces gĂšnes sont gĂ©nĂ©ralement co-rĂ©gulĂ©s et donc co-exprimĂ©s. Cette co-rĂ©gulation peut ĂȘtre mise en Ă©vidence par des mĂ©ta-analyses de donnĂ©es de puces Ă ADN (micro-arrays) telles que Gemma ou COXPRESdb. Dans un travail prĂ©cĂ©dent [Al Adhami et al., 2015], la topologie dâun rĂ©seau de co-expression de gĂšnes a Ă©tĂ© caractĂ©risĂ© en utilisant deux paramĂštres de description des rĂ©seaux qui discriminent des groupes de gĂšnes sĂ©lectionnĂ©s alĂ©atoirement (modules alĂ©atoires, RM) de groupes de gĂšnes avec des liens fonctionnels connus (modules fonctionnels, FM), câest-Ă -dire des gĂšnes appartenant au mĂȘme processus biologique GO. Dans le prĂ©sent travail, nous avons cherchĂ© Ă gĂ©nĂ©raliser cette approche et Ă proposer une mĂ©thode, appelĂ©e TopoFunc, pour amĂ©liorer lâannotation existante de la fonction gĂ©nique. Nous avons dâabord testĂ© diffĂ©rents descripteurs topologiques du rĂ©seau de co-expression pour sĂ©lectionner ceux qui identifient le mieux des modules fonctionnels. Puis, nous avons constituĂ© une base de donnĂ©es rassemblant des modules fonctionnels et alĂ©atoires, pour lesquels, sur la base des descripteurs sĂ©lectionnĂ©s, nous avons construit un modĂšle de discrimination LDA [Friedman et al., 2001] permettant, pour un sous-ensemble de gĂšnes donnĂ©, de prĂ©dire son type (fonctionnel ou non). BasĂ©e sur la mĂ©thode de similaritĂ© de gĂšnes travaillĂ©e par Wang et ses collĂšgues [Wang et al., 2007], nous avons calculĂ© un score de similaritĂ© fonctionnelle entre les gĂšnes dâun module. Nous avons combinĂ© ce score avec celui du modĂšle LDA dans une fonction de fitness implĂ©mentĂ© dans un algorithme gĂ©nĂ©tique (GA). Ă partir du processus biologique dâontologie de gĂšnes donnĂ© (GO-BP), AG visait Ă Ă©liminer les gĂšnes faiblement co-exprimĂ©s avec la plus grande clique de GO-BP et Ă ajouter des gĂšnes «amĂ©liorant» la topologie et la fonctionnalitĂ© du module. Nous avons testĂ© TopoFunc sur 193 GO-BP murins comprenant 50-100 gĂšnes et avons montrĂ© que TopoFunc avait agrĂ©gĂ© un certain nombre de nouveaux gĂšnes avec le GO-BP initial tout en amĂ©liorant la topologie des modules et la similaritĂ© fonctionnelle. Ces Ă©tudes peuvent ĂȘtre menĂ©es sur plusieurs espĂšces (homme, souris, rat, et possiblement poulet et poisson zĂšbre) afin dâidentifier des modules fonctionnels conservĂ©s au cours de lâĂ©volution
TopoFun: a machine learning method to improve the functional similarity of gene co-expression modules
International audienceA comprehensive, accurate functional annotation of genes is key to systems-level approaches. As functionally related genes tend to be co-expressed, one possible approach to identify functional modules or supplement existing gene annotations is to analyse gene co-expression. We describe TopoFun, a machine learning method that combines topological and functional information to improve the functional similarity of gene co-expression modules. Using LASSO, we selected topological descriptors that discriminated modules made of functionally related genes and random modules. Using the selected topological descriptors, we performed linear discriminant analysis to construct a topological score that predicted the type of a module, random-like or functional-like. We combined the topological score with a functional similarity score in a fitness function that we used in a genetic algorithm to explore the co-expression network. To illustrate the use of TopoFun, we started from a subset of the Gene Ontology Biological Processes (GO-BPs) and showed that TopoFun efficiently retrieved genes that we omitted, and aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. Using an independent protein-protein interaction database, we confirmed that the novel genes gathered by TopoFun were functionally related to the original gene set