93 research outputs found

    Identification of phlebotomine sand fly (Diptera: Psychodidae) in Atlantic forest fragments and their dispersal to urban area

    Get PDF
    Abstract The geographical distribution of sand flies in Brazil has been the subject of some studies, yet there is no information about the phlebotomine fauna in João Pessoa, State of Paraíba, Brazil. The aim of this work is to evaluate the occurrence and distribution of sand flies in the Atlantic forest fragments and to evaluate a possible dispersion in 06 nearby districts. Light traps were used during three consecutive nights, supplemented by an aspirator during the dry period and rainy season. A total of 222 sand flies were found, 143 (130 males and 13 females) in the Atlantic forest, and 79 in urban areas. During the entire dry season, three species of phlebotomine sand flies were recorded in 11 forest fragments, Lutzomyia longipalpis, Lu. migonei and Lu. whitmani. During the rainy season, only Lu. longipalpis was found. This was the only species identified in the studied neighborhoods during both seasons. The differences in diversity of sand flies encountered between natural habitats and urban areas may thus be correlated mostly with adaptations to particular habitats and availability of food. One species (Lu. longipalpis) appears to be rapidly adapting to urban areas because of deforestation

    AVASUS’ Contributions to Promoting Lifelong Learning in Health: Toward Achieving the SDGs and Strengthening Global Health Security

    Get PDF
    The Virtual Learning Environment of the Brazilian Health System (AVASUS) was developed by the Laboratory for Technological Innovation in Health (LAIS) and the Secretariat of Distance Education (SEDIS) at the Federal University of Rio Grande do Norte (UFRN) in partnership with Brazil’s Ministry of Health (MoH). AVASUS provides open educational resources in the health field and has emerged as the third largest platform for massive health education globally, with more than one million students. Among the various learning pathways AVASUS offers, some specifically focus on meeting the educational needs to address public health emergencies and overlooked health contexts. The main argument in this study is that technology-mediated lifelong learning in health is an effective strategy for achieving the Sustainable Development Goals (SDGs) of the 2030 Agenda. This chapter analyzes the pathways related to COVID-19, syphilis, and prison health, focusing on the contributions towards achieving SDGs 3, 4, 5, 10, 11, 16, and 17 and fulfilling the Global Health Security Agenda. Our analysis revealed two key findings. Lifelong learning in health (i) prompts decision-making on public health policies and (ii) contributes towards implementing the SDGs. Ultimately, AVASUS should be recognized as a tool to improve health services and support policy-making

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore