41 research outputs found
Study on yield potentiality and spatial requirement of rice varieties (Oryza sativa L.) in system of rice intensification (SRI) under red and laterite zone of West Bengal, India
Field experiment was conducted at Rice Research Station, Bankura during kharif season 2009 and 2010 to study the yield potentiality and spatial requirement of rice varieties in system of rice intensification (SRI) under red and laterite zone of West Bengal. The experiment was laid out in a randomized complete block design (RCBD) in a three replications with two rice varieties (Swarna and Lalat). Performances of swarna and lalat varieties in SRI as compared to conventional method of rice cultivation (CMRC) were investigated. Swarna (MTU 7029) has yielded maximum grain yield (6.07, 5.66 and 5.86 t ha-1 during 2009, 2010 and in pooled, respectively) from the treatment T7 (25 × 25 cm spacing) under SRI. Lowest grain yield (3.55, 3.23 and 3.38 t ha-1 during 2009, 2010 and in pooled, respectively) was recorded from treatment T9 (Lalat at 20 × 15 cm spacing) under CMRC. SRI technology has potential in increasing more grain yield, it saves seed requirement and irrigation water and chemical fertilizer considering than conventional method of cultivation. Rice cultivation is more sustainable and profitable for the farmers in SRI under the red and laterite zone of West Bengal
Gas Chromatography-Mass Spectrometry Based Isotopic Abundance Ratio Analysis of Biofield Energy Treated Methyl-2-napthylether (Nerolin)
International audienceMethyl-2-napthylether (nerolin) is an organic compound and has the applications in pharmaceutical, and perfume industry. The stable isotope ratio analysis is increasing importance in various field of scientific research. The objective of the current study was to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) in nerolin using the gas chromatography-mass spectrometry (GC-MS). The compound nerolin was divided into two parts - one part was control sample (untreated), and another part was considered as biofield energy treated sample which was received the biofield energy treatment through the unique biofield energy transmission process by Mr. Mahendra Kumar Trivedi (also known as The Trivedi Effect®). The biofield energy treated nerolin was analyzed at different time intervals and were represented as T1, T2, T3, and T4 in order to understand the effect of the biofield energy treatment on isotopic abundance ratio with respect to the time. From the GC-MS spectral analysis, the presence of the molecular ion peak C11H10O+ (m/z 158) along with major fragmented peaks C10H7O- (m/z 143), C10H8 (m/z 128), C9H7+ (m/z 115), C7H5+ (m/z 89), C5H3+ (m/z 63), C4H3+ (m/z 51), and C3H3+ (m/z 39) were observed in both control and biofield treated samples. Only, the relative peak intensities of the fragmented ions in the biofield treated nerolin was notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis of nerolin using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated nerolin at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, as compared to the control sample. Likewise, the isotopic abundance ratio of PM+2/PM at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, respectively in the biofield treated nerolin as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) were significantly increased in the biofield energy treated sample as compared to the control sample with respect to the time. It is concluded that Mr. Trivedi’s biofield energy treatment has the significant impact on alteration in isotopic abundance of nerolin as compared to the control sample. The biofield treated nerolin might display different altered physicochemical properties and rate of reaction and could be an important intermediate for the production of pharmaceuticals, chemicals, and perfumes in the industry
Evaluation of Isotopic Abundance Ratio in Biofield Energy Treated Nitrophenol Derivatives Using Gas Chromatography-Mass Spectrometry
International audienceNitrophenols are the synthetic organic chemicals used for the preparation of synthetic intermediates, organophosphorus pesticides, and pharmaceuticals. The objective of the present study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of PM+1/PM, and PM+2/PM in o- and m-nitrophenol using the gas chromatography-mass spectrometry. The o- and m-nitrophenol were divided into two parts - one part was control sample, and another part was considered as biofield energy treated sample, which received Mr. Trivedi’s biofield energy treatment (The Trivedi Effect®). The biofield energy treated nitrophenols having analyzed at different time intervals were designated as T1, T2, T3, and T4. The GC-MS analysis of both the control and biofield treated samples indicated the presence of the parent molecular ion peak of o- and m-nitrophenol (C6H5NO3+) at m/z 139 along with major fragmentation peaks at m/z 122, 109, 93, 81, 65, and 39. The relative peak intensities of the fragmented ions in the biofield treated o- and m-nitrophenol were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated o-nitrophenol at T2 and T3 was significantly increased by 14.48 and 86.49%, respectively as compared to the control sample. Consequently, the isotopic abundance ratio of PM+2/PM in the biofield energy treated sample at T2 and T3 was increased by 11.36, and 82.95%, respectively as compared to the control sample. Similarly, in m-nitrophenol, the isotopic abundance ratio of PM+1/PM in the biofield energy treated sample at T1, T3, and T4 was increased by 5.82, 5.09, and 6.40%, respectively as compared to the control sample. Subsequently, the isotopic abundance ratio of PM+2/PM at T1, T2, T3 and T4 in the biofield energy treated m-nitrophenol was increased by 6.33, 3.80, 16.46, and 16.46%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 15N/14N or 17O/16O), and PM+2/PM (18O/16O) were altered in the biofield energy treated o- and m-nitrophenol as compared to the control increased in most of the cases. The biofield treated o- and m-nitrophenol that have improved isotopic abundance ratios might have altered the physicochemical properties and could be useful in pharmaceutical and chemical industries as an intermediate in the manufacturing of pharmaceuticals and other useful chemicals for the industrial application
Khesari (Lathyrus sativus L.), an ancient legume for future gain: An expedition collection from parts of West Bengal state of Eastern India
395-403Grasspea is one of the staple foods of the local people living in the eastern parts of India. An expedition was undertaken during March, 2020 to collect germplasm of grasspea in the lower-Gangetic riverine belt and coastal areas of West Bengal of eastern India lying between latitude 21.43-24.44°N and longitude 87.23-88.90°E. From the results of a structured questionnaire administered to grasspea farmers in 57 villages located in 96 local government areas, it appeared that grasspea is the primary winter pulse cultivated in this region. Large variability of germplasm exist, ranging from small to bold seed, early to late maturing types, moderate to the high biomass type of grasspea. Most of these landraces have been adopted over the years from neighbouring communities, but in a few instances, the varietal replacement was noted, which came either through the involvement of government departments or local seed dealers. The highest proportion of the accessions (52.38%) was collected from the Purba Medinipur district, and the lowest (19.05%) was from Paschim Medinipur. On-spot evaluation of morphological traits, variations was detected in the descriptor characteristics across the locations. A total of 21 accessions was collected and assessed on-spot for different characters, viz., the seed's size, shape, seed colour, taste and texture revealed significant variation. The implications of this survey results for grasspea improvement in India are discussed in the present study
Influence of the Consciousness Energy Healing Treatment on the Physicochemical, Spectral, Thermal and Behavioral Properties of Sodium Selenate
Sodium selenate is an important nutraceutical/pharmaceutical compound used for the prevention and treatment of cancer, diabetes, inflammatory diseases, etc. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing treatment) on physical, structural, thermal, and behavioral properties of sodium selenate using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Sodium selenate was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The PXRD analysis showed a significant alteration of the crystallite size of the treated sample in the range of -34.41% to 33.27% compared to the control sample. However, the average crystallite size of the treated sample was significantly decreased by 7.85% compared with the control sample. The particle size of the treated sample at d10, d50, and d90 values were significantly reduced by 4.72%, 8.40%, and 32.33%, respectively compared with the control sample. Consequently, the surface area of the treated sample was significantly increased by 6.25% compared to the control sample. The control and treated FT-IR spectra indicated the presence of sharp and strong absorption bands at 886 cm-1 and 887 cm-1, respectively due to the Se=O stretching. The UV-vis spectroscopic analysis displayed that the wavelength for the maximum absorbance of the control and treated samples were at 204.6 and 204.9 nm, respectively. TGA analysis revealed that the total weight loss of the treated sample was reduced significantly by 5.64% compared with the control sample. The DSC analysis showed that the treated sample (94.63°C) had very close vaporization temperature than the control sample (94.97°C). But, the latent heat of vaporization was increased significantly in the treated sample by 7.06% compared to the control sample. Thus, The Trivedi Effect® - Energy of Consciousness Healing Treatment might lead to generate a new polymorphic form of sodium selenate, which would be more soluble, bioavailable, and thermally stable compared with the untreated sample. The Trivedi Effect® treated sodium selenate would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, stress, aging, infectious diseases, cancer, diabetes, heart diseases, Alzheimer’s disease, etc.
https://www.trivedieffect.com/science/influence-of-the-consciousness-energy-healing-treatment-on-the-physicochemical-spectral-thermal-and-behavioral-properties-of-sodium-selenate
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=224&doi=10.11648/j.ajche.20170502.1
Characterization of Physical, Structural, Thermal, and Behavioral Properties of the Consciousness Healing Treated Zinc Chloride
Zinc chloride is an important pharmaceutical/nutraceutical compound used as a source of zinc. The objective of the current study was to investigate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample compared with the control sample. A sharp peak at 2θ equal to 16.58° was observed in the control sample, but it was disappeared in the treated sample. The average crystallite size of the treated sample was significantly reduced by 21.31% compared with the control sample. The particle size values at d10, d50, and d90 were significantly decreased by 8.15%, 6.28%, and 5.26%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was significantly increased by 7.14% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample were found at 510 cm-1 and 511 cm-1, respectively. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of both the control and treated samples was at 196 nm. The DSC analysis exhibited that the melting and decomposition temperature were decreased by 0.29% and 0.28%, respectively in the treated zinc chloride compared to the control sample. The latent heat of fusion of the treated sample (370.48 J/g) was increased significantly by 97.71% compared with the control sample (187.39 J/g). This results indicated that zinc chloride need more heat energy to undergo the process of melting after Biofield Energy Treatment. The enthalpy of decomposition of the treated sample was significantly decreased by 15.40% compared with the control sample. The current study anticipated that The Trivedi Effect®-Energy of Consciousness Healing Treatment might lead to produce a new polymorphic form of zinc chloride, which would be more soluble, bioavailable and latent heat of fusion compared with the untreated compound. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
https://www.trivedieffect.com/science/characterization-of-physical-structural-thermal-and-behavioral-properties-of-the-consciousness-healing-treated-zinc-chloride
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=206&doi=10.11648/j.wjac.20170202.1
Characterization of Physicochemical, Thermal, Structural, and Behavioral Properties of Magnesium Gluconate After Treatment with the Energy of Consciousness
Magnesium gluconate is a potent antioxidant and widely used for the prevention and treatment of hypomagnesia. The current research was aimed to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment on magnesium gluconate for the change in the physicochemical, structural, thermal and behavioral properties using PXRD, PSD, FT-IR, UV-vis spectroscopy, TGA, and DSC analysis. Magnesium gluconate was divided into two parts – one part was control without any Biofield Energy Treatment, while another part was treated with The Trivedi Effect® - Energy of Consciousness Healing Treatment remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The PXRD analysis exhibited that the crystallite size of the treated sample was remarkably changed from - 24.96% to 99.98% compared with the control sample. The average crystallite size was significantly increased by 7.79% in the treated sample compared with the control sample. PSD analysis revealed that the particle sizes in The Trivedi Effect® Treated sample at d10, d50 and d90 values were decreased by 5.36%, 11.35% and 0.90%, respectively compared with the control sample. The surface area analysis revealed that surface area of the Biofield Energy Treated sample was significantly increased by 7.48% compared with the control sample. The FT-IR and UV-vis analysis showed that structure of the magnesium gluconate remained the same in both the treated and control samples. The TGA analysis revealed four steps thermal degradation of both the samples and the total weight loss of Biofield Energy Treated sample was increased by 0.12% compared with the control sample. The DSC analysis demonstrated that the melting temperature of the Biofield Energy Treated sample (171.29°C) was increased by 0.18% compared with the control sample (170.99°C). The latent heat of fusion was significantly increased by 27.09% in the treated sample compared with the control sample. The current study revealed that The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) might lead to a new polymorphic form of magnesium gluconate, which would be more soluble, bioavailable, and thermally stable compared with the untreated compound. The Biofield Treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, The Trivedi Effect® Treated magnesium gluconate would be very useful to design better nutraceutical and/or pharmaceutical formulations that might offer better therapeutic responses against inflammatory diseases, immunological disorders, stress, aging, and other chronic infections.
Source:
https://www.trivedieffect.com/science/characterization-of-physicochemical-thermal-structural-and-behavioral-properties-of-magnesium-gluconate-after-treatment-with-the-energy-of-consciousness
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=330&doi=10.11648/j.ijpc.20170301.1
Effect of the Energy of Consciousness (The Trivedi Effect®) on the Structural Properties and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy
Magnesium gluconate has the wide application for the prevention and treatment of hypomagnesemia. The objective of the current study was to investigate the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Biofield Energy Healing Treatment remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of both the control and treated samples revealed the presence of the mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.53 minutes with almost similar fragmentation pattern. The relative peak intensities of the fragment ions of the treated sample were significantly altered compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were observed almost similar for the control and the treated samples. The isotopic abundance ratio analysis revealed that the percentage of the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly increased in treated sample by 80.38%, compared with the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in the treated sample were significantly increased compared with the control sample. Thus, the treated magnesium gluconate could be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections. The Trivedi Effect® treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects.
Source:
https://www.trivedieffect.com/science/effect-of-the-energy-of-consciousness-the-trivedi-effect-on-the-structural-properties-and-isotopic-abundance-ratio-of-magnesium-gluconate-using-lc-ms-and-nmr-spectroscopy
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=110&doi=10.11648/j.ab.20170501.1
Evaluation of the Trivedi Effect®- Energy of Consciousness Energy Healing Treatment on the Physical, Spectral, and Thermal Properties of Zinc Chloride
Zinc chloride has the importance in pharmaceutical/nutraceutical industries for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on physical, structural, and thermal properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Zinc chloride was divided into two parts. One part was denoted as the control without any, while the other part was defined as the Trivedi Effect® Treated sample, which received the Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis revealed that the crystallite size and relative intensities of the PXRD peaks significantly altered in the treated sample compared with the control sample. The crystallite size of treated sample was decreased by 4.19% compared with the control sample. The particle size at d10 and d50 of the Biofield Energy Treated sample decreased by 4.72% and 2.70%, respectively compared with the control sample. But, the particle size of the treated sample increased at d90 by 0.83 compared with the control sample. Consequently, the surface area was increased by 3.22% in the treated sample compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control and treated sample was at 520 cm-1 and 521 cm-1, respectively. The UV-vis analysis exhibited that the wavelength of the maximum absorbance of the control and treated samples was at 196.4 and 196.2 nm, respectively. The TGA thermograms revealed two steps of the thermal degradation and the weight loss of the treated sample was significantly reduced by 22.54% in the 1st step of degradation compared with the control sample. The DSC analysis showed that the enthalpy of decomposition was significantly increased by 34.9% in the treated sample (89.17 J/g) compared with the control sample (66.10 J/g). Overall, DSC and TGA analysis indicated that the thermal stability of the treated sample was increased compared with the control sample. The current study anticipated that The Trivedi Effect®-Energy of Consciousness Healing Treatment might lead to generate a new polymorphic form of zinc chloride, which would be more soluble, stable, and higher absorption rate compared with the control sample. Hence, the treated zinc chloride could be very useful to design the various forms of nutraceuticals and pharmaceutical formulation which might be providing a better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
https://www.trivedieffect.com/science/evaluation-of-the-trivedi-effect-energy-of-consciousness-energy-healing-treatment-on-the-physical-spectral-and-thermal-properties-of-zinc-chloride
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=118&doi=10.11648/j.ajls.20170501.1
Liquid Chromatography – Mass Spectrometry (LC-MS) Analysis of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness
Withania somnifera (ashwagandha) root extract is very popular ancient herbal medicine. The objective of the study was to characterize and evaluate the impact of The Trivedi Effect®-Biofield Energy Healing Treatment (Energy of Consciousness) on phytoconstituents present in the ashwagandha root extract using LC-MS. Ashwagandha root extract was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received Energy of Consciousness Healing Treatment remotely from eighteen renowned Biofield Energy Healers. The LC-MS analysis of the control and treated samples showed a very close retention time (Rt), indicated that the polarity of the phytoconstituents present in the root extract are same. The numbers of peaks observed in the total ion chromatograms were 28 and 29 in the control and treated samples, respectively. The change in the peak height% of the phytoconstituents in the treated sample was altered significantly within the range of -50.91% to 118.12% compared with the control sample. Similarly, the change in the peak area% of most of the phytoconstituents in the treated ashwagandha was significantly altered within the range of -54.95% to 66.95% compared with the control sample. An additional peak was appeared in the treated sample at Rt of 5.72 minutes, which was not found in the control sample. The LC-MS spectra indicated the presence of possible withanolides like -hydroxy-2,3-dihydro-withanolide F, withanolide A, withaferine A, withanone, withanolide D, ixocarpalactone A, withanolide S, thiowithanolide, etc. in both the samples. The peak are percentage (%) was altered in the identified withanolides, but withanolide sulfoxide was increased significantly by 12.44% in the treated sample compared with the control sample. These results indicated that The Trivedi Effect® - Biofield Energy Treatment might have an impact on the intrinsic physicochemical properties of the phytoconstituents present in the ashwagandha root extract. This could be the probable cause of alteration in the peak height, peak area, and appearance of a new peak in the treated sample. As a result, the concentrations of the phytoconstituents altered in the treated sample compared with the control sample. The treated ashwagandha root extract would be helpful for designing better pharmaceutical/nutraceutical formulations which might be providing a better therapeutic response against autoimmune diseases, nervous and sexual disorders, infectious diseases, antiaging, diabetes, cancer, ulcer, immunological disorders, stress, arthritis, etc.
Source:
https://www.trivedieffect.com/science/liquid-chromatography-mass-spectrometry-lc-ms-analysis-of-withania-somnifera-ashwagandha-root-extract-treated-with-the-energy-of-consciousness
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=398&doi=10.11648/j.ajqcms.20170101.1