7 research outputs found

    Size Exclusion Chromatography with Multi Detection in Combination with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry as a Tool for Unraveling the Mechanism of the Enzymatic Polymerization of Polysaccharides

    No full text
    Determination of the size distributions of natural polysaccharides is a challenging task. More advantageous for characterization are well-defined synthetic (hyper)-branched polymers. In this study we concentrated on synthetic amylopectin analogues in order to obtain and compare all available data for different distributions and size dependence of molecular weights. Two groups of well-defined synthetic branched polysaccharides were synthesized via an in vitro enzyme-catalyzed reaction using the enzyme phosphorylase <i>b</i> from rabbit muscle and <i>Deinococcus geothermalis</i> glycogen branching enzyme. Synthetic polymers had a tunable degree of branching (2%–13% determined via <sup>1</sup>H NMR) and a tunable degree of polymerization (30–350 determined indirectly via UV spectrometry). The systems used for separation and characterization of branched polysaccharides were SEC-DMSO/LiBr and multi detection (refractive index detector, viscosity detector, and multi angle light scattering detector) and SEC-water/0.02% NaN<sub>3</sub>; and SEC-50 mM NaNO<sub>3</sub>/0.02% NaN<sub>3</sub> and multi detection. Additionally the side chain length distribution of enzymatically debranched polysaccharides was investigated by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. With this combination of characterization techniques, we were able not only to characterize the amylopectin analogues but also to solve parts of the molecular mechanism of their enzymatic polymerization. Moreover our materials showed potential to be standards in the field of natural polysaccharides characterization

    Nucleic Acid Chemistry in the Organic Phase: From Functionalized Oligonucleotides to DNA Side Chain Polymers

    No full text
    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA–surfactant complex as a reactive scaffold. A remarkable range of amphiphile–DNA structures (DNA–pyrene, DNA–triphenylphosphine, DNA–hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications

    Functionalization of Fatty Acid Vesicles through Newly Synthesized Bolaamphiphile–DNA Conjugates

    No full text
    The surface functionalization of fatty acid vesicles will allow their use as nanoreactors for complex chemistry. In this report, the tethering of several DNA conjugates to decanoic acid vesicles for molecular recognition and synthetic purposes was explored. Due to the highly dynamic nature of these structures, only one novel bola-amphiphile DNA conjugate could interact efficiently with or spontaneously pierce into the vesicle bilayers without jeopardizing their self-assembly or stability. This molecule was synthesized via a Cu­(I)-catalyzed [3 + 2] azide–alkyne cycloaddition (click reaction), and consists of a single hydrocarbon chain of 20 carbons having on one end a triazole group linked to the 5′-phosphate of the nucleic acid and on the other side a hydroxyl-group. Its insertion was so effective that a fluorescent label on the DNA complementary to the conjugate could be used to visualize fatty acid structures

    Photoswitching of DNA Hybridization Using a Molecular Motor

    No full text
    Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After it was determined that motor function was not affected by the rigid arms of the linker, solid-phase synthesis was employed to incorporate the motor into an 8-base-pair self-complementary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor–DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments

    Photoswitching of DNA Hybridization Using a Molecular Motor

    Get PDF
    Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After it was determined that motor function was not affected by the rigid arms of the linker, solid-phase synthesis was employed to incorporate the motor into an 8-base-pair self-complementary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor–DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments

    Non-covalent Monolayer-Piercing Anchoring of Lipophilic Nucleic Acids: Preparation, Characterization, and Sensing Applications

    No full text
    Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid–DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid–DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 °C leads to the release of the lipid–DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid–DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid–DNA. The formation of the lipid–DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity

    Filling the Green Gap of a Megadalton Photosystem I Complex by Conjugation of Organic Dyes

    Get PDF
    Photosynthesis is Nature’s major process for converting solar into chemical energy. One of the key players in this process is the multiprotein complex photosystem I (PSI) that through absorption of incident photons enables electron transfer, which makes this protein attractive for applications in bioinspired photoactive hybrid materials. However, the efficiency of PSI is still limited by its poor absorption in the green part of the solar spectrum. Inspired by the existence of natural phycobilisome light-harvesting antennae, we have widened the absorption spectrum of PSI by covalent attachment of synthetic dyes to the protein backbone. Steady-state and time-resolved photoluminescence reveal that energy transfer occurs from these dyes to PSI. It is shown by oxygen-consumption measurements that subsequent charge generation is substantially enhanced under broad and narrow band excitation. Ultimately, surface photovoltage (SPV) experiments prove the enhanced activity of dye-modified PSI even in the solid state
    corecore