39 research outputs found

    Role of Electon Excitation and Nature of Molecular Gas in Cluster Central Elliptical Galaxies

    Get PDF
    We present observations in CO(3-2) that, combined with previous observations in CO(2-1), constrain the physical properties of the filamentary molecular gas in the central ∼\sim6.5 kpc of NGC 1275, the central giant elliptical galaxy of the Perseus cluster. We find this molecular gas to have a temperature ≳20\gtrsim 20 K and a density ∼\sim10210^2-104 cm−310^4 {\rm \ cm^{-3}}, typically warmer and denser than the bulk of Giant Molecular Clouds (GMCs) in the Galaxy. Bathed in the harsh radiation and particle field of the surrounding intracluster X-ray gas, the molecular gas likely has a much higher ionization fraction than that of GMCs. For an ionization fraction of ∼\sim10−410^{-4}, similar to that of Galactic diffuse (≲250 cm−3\lesssim 250 {\rm \ cm^{-3}}) partially-molecular clouds that emit in HCN(1-0) and HCO+^+(1-0), we show that the same gas traced in CO can produce the previously reported emissions in HCN(3-2), HCO+^+(3-2), and CN(2-1) from NGC 1275; the dominant source of excitation for all the latter molecules is collisions with electrons. To prevent collapse, as evidenced by the lack of star formation in the molecular filaments, they must consist of thin strands that have cross-sectional radii ≲\lesssim0.2-2 pc if supported solely by thermal gas pressure; larger radii are permissible if turbulence or poloidal magnetic fields provide additional pressure support. We point out that the conditions required to relate CO luminosities to molecular gas masses in our Galaxy are unlikely to apply in cluster central elliptical galaxies. Rather than being virialized structures analogous to GMCs, we propose that the molecular gas in NGC 1275 comprises pressure-confined structures created by turbulent flows.Comment: 41 pages, 1 table, 12 figures; accepted by Ap

    Tomography of X-ray Nova Muscae 1991: Evidence for ongoing mass transfer and stream-disc overflow

    Full text link
    We present a spectroscopic analysis of the black hole binary Nova Muscae 1991 in quiescence using data obtained in 2009 with MagE on the Magellan Clay telescope and in 2010 with IMACS on the Magellan Baade telescope at the Las Campanas Observatory. Emission from the disc is observed in H alpha, H beta and Ca II (8662 A). A prominent hotspot is observed in the Doppler maps of all three emission lines. The existence of this spot establishes ongoing mass transfer from the donor star in 2009-2010 and, given its absence in the 1993-1995 observations, demonstrates the presence of a variable hotspot in the system. We find the radial distance to the hotspot from the black hole to be consistent with the circularization radius. Our tomograms are suggestive of stream-disc overflow in the system. We also detect possible Ca II (8662 A) absorption from the donor star.Comment: 10 pages, 11 figures, 1 table. Accepted for publication in MNRA

    The Complete Local Volume Groups Sample - I. Sample Selection and X-ray Properties of the High-Richness Subsample

    Get PDF
    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically-selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei, and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least 4 optically bright (log L_B>=10.2 LBsol) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65kpc and with luminosity >10^41 erg/s, while a further 3 groups host smaller galaxy-scale gas halos. The X-ray bright groups have masses in the range M_500=0.5-5x10^13 Msol, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200x10^41 erg/s. We find that ~53-65% of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30% of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ~35% of their dominant early-type galaxies host AGN with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (L_X,R500<10^42 erg/s) with no concentrated cool core, or highly disturbed. This leads us to suggest that ~20% of X-ray bright groups in the local universe may still be unidentified.Comment: Accepted for publication by MNRAS, 25 Manuscript pages with 6 tables and 10 figures, plus 30 pages of appendices. v2 corrects minor typographical errors identified at proof stag

    Cavities and shocks in the galaxy group HCG 62 as revealed by Chandra, XMM and GMRT data

    Full text link
    We report on the results of an analysis of Chandra, XMM-Newton and new GMRT data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for AGN/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHz and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of ∼10−4\sim 10^{-4}, and that the radio pressure of the lobes is about one order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the south-west of the group center, close to the southern radio lobe, with a Mach number ∼1.5\sim 1.5 and a total power which is about one order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.Comment: 14 pages, 8 figures, accepted for publication in ApJ. Revised version including minor comments and expanded discussion (version with full resolution figures available at http://hea-www.harvard.edu/~mgitti/hcg62-gitti.pdf
    corecore