26 research outputs found

    Additional file 4: Table S3. of Evolutionary loss of peroxisomes – not limited to parasites

    No full text
    Table of putative peroxisomal enzymes and the prediction of their localization. (XLS 7288 kb

    Additional file 3: Figure S1. of Evolutionary loss of peroxisomes – not limited to parasites

    No full text
    Phylogeny of Pex10 and other zinc-finger domain containing proteins showing, that O. dioica GSOIDT00013970001 sequence isn't monophyletic with eukaryotic Pex10 sequences. Bootsrap supports are shown. (PDF 351 kb

    Visualition of Great War in the Weekly Světozor

    No full text
    The bachelor thesis deals with the issue of imaging of Great War in czech weekly "Světozor". It will examine how much space during years 1914-1918 is given to war events, what sides of the war conflict are shown and with what frequency. The thesis also wants to cover whether there is any change in the manner of imaging during the course of the war. Last section of the thesis will be on the topic how could the reader perceive the Great War based on the photographs of this weekly

    Additional file 7: of A sophisticated, differentiated Golgi in the ancestor of eukaryotes

    No full text
    Figure S4. Phylogenetic analysis of metazoan GRASP homologues indicates that the duplication producing the GRASP55 and GRASP65 paralogues occurred prior to the divergence of jawed fish from other vertebrates. Both MrBayes and RAxML were used in this analysis, yielding posterior probabilities and bootstrap values, respectively, as node support values, which are shown in the format MrBayes/RAxML (see Methods). The topology shown was reconstructed using MrBayes. Significant support was found for GRASP55 and GRASP65 clades, including Callorhinchus milii (Australian ghost shark) protein sequences, consistent with the presence of both paralogues in the ancestor of jawed fish and other vertebrates. GRASP protein sequences from earlier-branching metazoans do not split into distinct GRASP55 or GRASP65 clades, though they appear to share greater similarity with GRASP55 than GRASP65. (PDF 327 kb

    Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase

    No full text
    <div><p>Upon their translocation into the mitochondrial matrix, the N-terminal pre-sequence of nuclear-encoded proteins undergoes cleavage by mitochondrial processing peptidases. Some proteins require more than a single processing step, which involves several peptidases. Down-regulation of the putative <i>Trypanosoma brucei</i> mitochondrial intermediate peptidase (MIP) homolog by RNAi renders the cells unable to grow after 48 hours of induction. Ablation of MIP results in the accumulation of the precursor of the trypanosomatid-specific trCOIV protein, the largest nuclear-encoded subunit of the cytochrome <i>c</i> oxidase complex in this flagellate. However, the trCOIV precursor of the same size accumulates also in trypanosomes in which either alpha or beta subunits of the mitochondrial processing peptidase (MPP) have been depleted. Using a chimeric protein that consists of the N-terminal sequence of a putative subunit of respiratory complex I fused to a yellow fluorescent protein, we assessed the accumulation of the precursor protein in trypanosomes, in which RNAi was induced against the alpha or beta subunits of MPP or MIP. The observed accumulation of precursors indicates MIP depletion affects the activity of the cannonical MPP, or at least one of its subunits.</p></div

    Additional file 2: of A sophisticated, differentiated Golgi in the ancestor of eukaryotes

    No full text
    Figure S1. Dot plot of all potential Golgi stacking proteins examined. Taxa with unstacked Golgi are indicated by red text. Blue dots indicate identification of at least one orthologue. Light blue dots indicate the presence of an unresolved protein containing a GRIP-domain but which upon inspection of the alignment does not appear to be a confirmed orthologue of this protein. These proteins were therefore not taken into account when estimating the appearance point of a component. However, since all deductions made represent an estimate of “at least as early as time point X”, our deductions still stand, but origins of proteins could be slightly earlier than stated, should these candidates be real positive hits. Regardless, their presence does not affect the overall conclusions regarding pan-eukaryotic mechanisms of Golgi-stacking, since none of these cases involve ancient candidate stacking genes. For the GRIP-containing protein search results, positive hits in metazoans are also identified in searches specifically for the human GRIP domain-containing proteins GCC185, GCC88, golgin-245, or golgin-97. However, “GRIP-containing” includes animal-specific GRIP golgins (GCC88, GCC185, golgin-245, and golgin-97), as well as non-animal sequences with GRIP domains. Grey dots indicate identification of a potential GRIP domain-containing sequence not retrieved as positive hits in the previous searches, but matching the HMM with a bit score of at least 25. The striped dot (P. pastoris Sec16) indicates identification of Sec16 in nucleotide sequence scaffolds, but not predicted protein sequences (see Methods). Homology search results supporting the orthology assignments are shown in Additional file 6: Table S3. The phylogenetic tree on the left is based on established topologies for the taxa shown [75, 101]. (PDF 937 kb

    Additional file 1: Table S1. of A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution

    No full text
    The list of RABL2 genes analyzed. Table S2. RABL2 sequences identified as contaminations. Table S3. Ciliary genes in species with RABL2 yet unknown to have flagellated stages. (XLS 77 kb
    corecore