21 research outputs found

    Silencing and Un-silencing of Tetracycline-Controlled Genes in Neurons

    Get PDF
    To identify the underlying reason for the controversial performance of tetracycline (Tet)-controlled regulated gene expression in mammalian neurons, we investigated each of the three components that comprise the Tet inducible systems, namely tetracyclines as inducers, tetracycline-transactivator (tTA) and reverse tTA (rtTA), and tTA-responsive promoters (Ptets). We have discovered that stably integrated Ptet becomes functionally silenced in the majority of neurons when it is inactive during development. Ptet silencing can be avoided when it is either not integrated in the genome or stably-integrated with basal activity. Moreover, long-term, high transactivator levels in neurons can often overcome integration-induced Ptet gene silencing, possibly by inducing promoter accessibility

    AutonoMouse: High throughput operant conditioning reveals progressive impairment with graded olfactory bulb lesions.

    No full text
    Operant conditioning is a crucial tool in neuroscience research for probing brain function. While molecular, anatomical and even physiological techniques have seen radical increases in throughput, efficiency, and reproducibility in recent years, behavioural tools have somewhat lagged behind. Here we present a fully automated, high-throughput system for self-initiated conditioning of up to 25 group-housed, radio-frequency identification (RFID) tagged mice over periods of several months and >106 trials. We validate this "AutonoMouse" system in a series of olfactory behavioural tasks and show that acquired data is comparable to previous semi-manual approaches. Furthermore, we use AutonoMouse to systematically probe the impact of graded olfactory bulb lesions on olfactory behaviour, demonstrating that while odour discrimination in general is robust to even most extensive disruptions, small olfactory bulb lesions already impair odour detection. Discrimination learning of similar mixtures as well as learning speed are in turn reliably impacted by medium lesion sizes. The modular nature and open-source design of AutonoMouse should allow for similar robust and systematic assessments across neuroscience research areas

    Two−photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo

    No full text
    Multiphoton imaging (MPI) is widely used for recording activity simultaneously from many neurons in superficial cortical layers in vivo. We combined regenerative amplification multiphoton microscopy (RAMM) with genetically encoded calcium indicators to extend MPI of neuronal population activity into layer 5 (L5) of adult mouse somatosensory cortex. We found that this approach could be used to record and quantify spontaneous and sensory−evoked activity in populations of L5 neuronal somata located as much as 800 μm below the pia. In addition, we found that RAMM could be used to simultaneously image activity from large (80) populations of apical dendrites and follow these dendrites down to their somata of origi

    Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb

    No full text
    Circuits in the brain possess the ability to orchestrate activities on different timescales, but the manner in which distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example of a place in which slow theta and fast gamma rhythms coexist. Furthermore, inhibitory interneurons that are generally implicated in rhythm generation are segregated into distinct layers, neatly separating local and global motifs. We combined intracellular recordings in vivo with circuit-specific optogenetic interference to examine the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits controlled rhythms on distinct timescales: local, glomerular networks coordinated theta activity, regulating baseline and odor-evoked inhibition, whereas granule cells orchestrated gamma synchrony and spike timing. Notably, granule cells did not contribute to baseline rhythms or sniff-coupled odor-evoked inhibition. Thus, activities on theta and gamma timescales are controlled by separate, dissociable inhibitory networks in the olfactory bulb.Deutsche Forschungsgemeinschaft (DFG-SPP1392)Max Planck Society for the Advancement of ScienceAlexander von Humboldt-StiftungGermany. Federal Ministry of Education and Research (US-German collaboration computational neuroscience)Medical Research Council (Great Britain) (MC_UP_1202/5)University of Tubingen (ExcellenzCluster Cell Networks
    corecore