443 research outputs found

    AdS_3 Partition Functions Reconstructed

    Full text link
    For pure gravity in AdS_3, Witten has given a recipe for the construction of holomorphically factorizable partition functions of pure gravity theories with central charge c=24k. The partition function was found to be a polynomial in the modular invariant j-function. We show that the partition function can be obtained instead as a modular sum which has a more physical interpretation as a sum over geometries. We express both the j-function and its derivative in terms of such a sum.Comment: 9 page

    Hyperhomocysteinemia in premature arterial disease: examination of cystathionine β-synthase alleles at the molecular level

    Get PDF
    Hyperhomocysteinemia occurs in approximately 30% of the patients with premature occlusive arterial disease (POAD). Some of these exhibit significantly reduced fibroblast cystathionine β-synthase (CBS) activities, suggesting that they may be heterozygous for CBS deficiency. To test this possibility, we studied cDNA derived from four well characterized patients with POAD, exhibiting hyperhomocysteinemia and reduced CBS activities, from four normal controls, and from four obligatory heterozygotes for CBS deficiency. Lysates of individual colonies of E.coli, containing full-length PCR-amplification products in the expression vector, pKK388.1, were tested for CBS activity. cDNA from at least seven of the eight possible independent POAD alleles encoded catalytically active, stable CBS which exhibited normal response to both PLP and AdoMet. The sequences of all 3'-untranslated regions of all seven isolated POAD alleles were identical to the normal, wild-type CBS sequences. The results of the expression studies were confirmed for one POAD patient by determining the full-length cDNA sequences for both alleles; these were entirely normal over the complete length of the cDNA. In contrast, the screening method correctly distinguished mutant from normal alleles in all four obligatory heterozygotes studied. We conclude that CBS mRNAs from POAD individuals are free from inactivating mutations, including all 33 previously identified in heterozygous carriers and homocystinuric patient

    Functional Properties of the Active Core of Human Cystathionine β-Synthase Crystals

    Get PDF
    Human cystathionine beta-synthase is a pyridoxal 5'-phosphate enzyme containing a heme binding domain and an S-adenosyl-l-methionine regulatory site. We have investigated by single crystal microspectrophotometry the functional properties of a mutant lacking the S-adenosylmethionine binding domain. Polarized absorption spectra indicate that oxidized and reduced hemes are reversibly formed. Exposure of the reduced form of enzyme crystals to carbon monoxide led to the complete release of the heme moiety. This process, which takes place reversibly and without apparent crystal damage, facilitates the preparation of a heme-free human enzyme. The heme-free enzyme crystals exhibited polarized absorption spectra typical of a pyridoxal 5'-phosphate-dependent protein. The exposure of these crystals to increasing concentrations of the natural substrate l-serine readily led to the formation of the key catalytic intermediate alpha-aminoacrylate. The dissociation constant of l-serine was found to be 6 mm, close to that determined in solution. The amount of the alpha-aminoacrylate Schiff base formed in the presence of l-serine was pH independent between 6 and 9. However, the rate of the disappearance of the alpha-aminoacrylate, likely forming pyruvate and ammonia, was found to increase at pH values higher than 8. Finally, in the presence of homocysteine the alpha-aminoacrylate-enzyme absorption band readily disappears with the concomitant formation of the absorption band of the internal aldimine, indicating that cystathionine beta-synthase crystals catalyze both beta-elimination and beta-replacement reactions. Taken together, these findings demonstrate that the heme moiety is not directly involved in the condensation reaction catalyzed by cystathionine beta-synthase

    On Critical Massive (Super)Gravity in adS3

    Get PDF
    We review the status of three-dimensional "general massive gravity" (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of "chiral gravity". We then show how these results extend to N=1 super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general `curvature-squared' N=1 supergravity model.Comment: 10 pages, Proceedings of ERE 2010, Granada, 6-10 september 2010; reference adde

    Activation of Mutant Enzyme Function In Vivo by Proteasome Inhibitors and Treatments that Induce Hsp70

    Get PDF
    Missense mutant proteins, such as those produced in individuals with genetic diseases, are often misfolded and subject to processing by intracellular quality control systems. Previously, we have shown using a yeast system that enzymatic function could be restored to I278T cystathionine β-synthase (CBS), a cause of homocystinuria, by treatments that affect the intracellular chaperone environment. Here, we extend these studies and show that it is possible to restore significant levels of enzyme activity to 17 of 18 (94%) disease causing missense mutations in human cystathionine β-synthase (CBS) expressed in Saccharomyces cerevisiae by exposure to ethanol, proteasome inhibitors, or deletion of the Hsp26 small heat shock protein. All three of these treatments induce Hsp70, which is necessary but not sufficient for rescue. In addition to CBS, these same treatments can rescue disease-causing mutations in human p53 and the methylene tetrahydrofolate reductase gene. These findings do not appear restricted to S. cerevisiae, as proteasome inhibitors can restore significant CBS enzymatic activity to CBS alleles expressed in fibroblasts derived from homocystinuric patients and in a mouse model for homocystinuria that expresses human I278T CBS. These findings suggest that proteasome inhibitors and other Hsp70 inducing agents may be useful in the treatment of a variety of genetic diseases caused by missense mutations

    Quantum dynamics and statistics of two coupled down-conversion processes

    Full text link
    In the framework of Heisenberg-Langevin theory the dynamical and statistical effects arising from the linear interaction of two nondegenerate down-conversion processes are investigated. Using the strong-pumping approximation the analytical solution of equations of motion is calculated. The phenomena reminiscent of Zeno and anti-Zeno effects are examined. The possibility of phase-controlled and mismatch-controlled switching is illustrated.Comment: 17 pages, 7 figure

    The Matrix Theory S-Matrix

    Get PDF
    The technology required for eikonal scattering amplitude calculations in Matrix theory is developed. Using the entire supersymmetric completion of the v^4/r^7 Matrix theory potential we compute the graviton-graviton scattering amplitude and find agreement with eleven dimensional supergravity at tree level.Comment: 10 pages, RevTeX, no figure

    Environmental influences on familial discordance of phenotype in people with homocystinuria: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Non-heritable factors may have an influence on the clinical expression of monogenic inherited metabolic diseases.</p> <p>Case presentation</p> <p>This is a case report of a man whose mother had been diagnosed late in childhood with pyridoxine responsive homocystinuria with lens dislocation and neurodevelopmental delay. These severe complications were not observed in her son who was pyridoxine unresponsive but who had been treated appropriately since early infancy.</p> <p>Conclusion</p> <p>The phenotype of people with homocystinuria can be discordant within a family, with variability in metabolic and clinical expression depending upon both the genotype and therapeutic interventions. Offspring of people with homocystinuria should be screened in early infancy and, if positive, treated appropriately whether they have pyridoxine responsive or unresponsive disease.</p

    Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat liver medium chain acyl coenzyme A dehydrogenase.

    Get PDF
    cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matching the amino acid sequence predicted from the cDNA to the NH2-terminal and nine internal tryptic peptide sequences derived from pure rat liver medium chain acyl-CoA dehydrogenase. The calculated molecular masses of the precursor medium chain acyl-CoA dehydrogenase, the mature medium chain acyl-CoA dehydrogenase, and the leader peptide are 46,600, 43,700, and 2,900 daltons, respectively. The leader peptide contains five basic amino acids and only one acidic amino acid; thus, it is positively charged, overall. Cysteine residues are unevenly distributed in the mature portion of the protein; five of six are found within the NH2-terminal half of the polypeptide. Comparison of medium chain acyl-CoA dehydrogenase sequence to other flavoproteins and enzymes which act on coenzyme A ester substrates did not lead to unambiguous identification of a possible FAD-binding site nor a coenzyme A-binding domain. The sequencing of other homologous acyl-CoA dehydrogenases will be informative in this regard
    corecore