66 research outputs found

    Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium

    Get PDF
    BACKGROUND Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This process traditionally depends on local expression of chemokines, though the roles of many of these in the degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine response in a light-induced model of retinal degeneration. METHODS Sprague-Dawley (SD) rats were exposed to 1,000 lux light damage (LD) for up to 24 hrs. At time points during (1 to 24 hrs) and following (3 and 7 days) exposure, animals were euthanized and retinas processed. Microarray analysis assessed differential expression of chemokines. Some genes were further investigated using polymerase chain reaction (PCR) and in situ hybridization and contrasted with photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Recruitment of retinal CD45 (+) leukocytes was determined via fluorescence activated cell sorting (FACS), and expression of chemokine receptors determined using PCR. RESULTS Exposure to 24 hrs of LD resulted in differential expression of chemokines including Ccl3, Ccl4, Ccl7, Cxcl1, and Cxcl10. Their upregulation correlated strongly with peak photoreceptor death, at 24 hrs exposure. In situ hybridization revealed that the modulated chemokines were expressed by a combination of Müller cells, activated microglia, and retinal pigment epithelium (RPE). This preceded large increases in the number of CD45(+) cells at 3- and 7-days post exposure, which expressed a corresponding repertoire of chemokine receptors. CONCLUSIONS Our data indicate that retinal degeneration induces upregulation of a broad chemokine response whose expression is coordinated by Müller cells, microglia, and RPE. The findings inform our understanding of the processes govern the trafficking of leukocytes, which are contributors in the pathology of retinal degenerations

    Differential effects of TFG-β and FGF-2 on in vitro proliferation and migration of primate retinal endothelial and Müller cells

    Get PDF
    Purpose: During retinal development, the pattern of blood vessel formation depends upon the combined effects of proliferation and migration of endothelial cells, astrocytes and Müller cells. In this study, we investigated the potential for transforming

    Anti-inflammatory and neuroprotective properties of the corticosteroid fludrocortisone in retinal degeneration

    Get PDF
    The pathogenesis of outer retinal degenerations has been linked to the elevation of cytokines that orchestrate pro-inflammatory responses within the retinal milieu, and which are thought to play a role in diseases such as geographic atrophy (GA), an advanced form of AMD. Here we sought investigate the anti-inflammatory and mechanistic properties of fludrocortisone (FA), as well as triamcinolone acetonide (TA), on Müller cell-mediated cytokine expression in response to inflammatory challenge. In addition, we investigated the neuroprotective efficacy of FA and TA in a photo-oxidative damage (PD), a model of outer retinal degeneration. Expression of CCL2, IL-6, and IL-8 with respect to FA and TA were assessed in Müller cells in vitro, following simulation with IL-1β or TNF-α. The dependency of this effect on mineralocorticoid and glucocorticoid signaling was also interrogated for both TA and TA via co-incubation with steroid receptor antagonists. For the PD model, C57BL/6 mice were intravitreally injected with FA or TA, and changes in retinal pathology were assessed via electroretinogram (ERG) and optical coherence tomography (OCT). FA and TA were found to dramatically reduce the expression of CCL2, IL-6, and IL-8 in Müller glia in vitro after inflammatory challenge with IL-1β or TNF-α (P  0.05). Our data indicate potent anti-inflammatory and mechanistic properties of corticosteroids, specifically FA, in suppressing inflammation and neurodegeneration degeneration associated with outer retinal atrophy. Taken together, our findings indicate that corticosteroids such as FA may have value as a potential therapeutic for outer retinal degenerations where such pro-inflammatory factors are implicated, including AMD

    Analysis of complement expression in light-induced retinal degeneration: Synthesis and deposition of C3 by microglia/macrophages is associated with focal photoreceptor degeneration

    Get PDF
    Purpose. To investigate the expression and localization of complement system mRNA and protein in a light-induced model of progressive retinal degeneration. Methods. Sprague-Dawley (SD) rats were exposed to 1000 lux of bright continuous light (BCL) for up to 24 hours. At time points during (1-24 hours) and after (3 and 7 days) exposure, the animals were euthanatized and the retinas processed. Differential expression of complement genes at 24 hours of exposure was assessed using microarray analysis. Expression of complement genes was validated by quantitative PCR, and expression of selected genes was investigated during and after BCL exposure. Photoreceptor apoptosis was assessed using TUNEL and C3 was further investigated by spatiotemporal analysis using in situ hybridization and immunohistochemistry. Results. Exposure to 24 hours of BCL induced differential expression of a suite of complement system genes, including classic and lectin components, regulators, and receptors. C1qr1, MCP, Daf1, and C1qTNF6 all modulated in concert with photoreceptor death and AP-1 expression, which reached a peak at 24 hours exposure. C1s and C4a reached peak expression at 3 days after exposure, while expression of C3, C3ar1, and C5r1 were maximum at 7 days after exposure. C3 mRNA was detected in ED1- and IBA1-positive microglia/macrophages, in the retinal vessels and optic nerve head and in the subretinal space, particularly at the margins of the emerging lesion. Conclusions. The data indicate that BCL induces the prolonged expression of a range of complement genes and show that microglia/macrophages synthesize C3 and deposit it in the ONL after BCL injury. These findings have relevance to the role of complement in progressive retinal degeneration, including atrophic AMD

    The cellular expression of antiangiogenic factors in fetal primate macula

    Get PDF
    PURPOSE. To characterize the cellular expression patterns of antiangiogenic factorsdifferentially regulated in the fetal human macula. METHODS. RNA was extracted from macular, nasal, and surround biopsies of three human fetal retinas at midgestation. Relative levels of expression of pigment epithelium- derived factor (PEDF), brain natriuretic peptide (BNP), collagen type IV_2 (COL4A2), and natriuretic peptide receptors A and C (NPRA and NPRC) were determined with quantitative PCR. Cellular expression of PEDF and BNP was investigated by in situ hybridization on retinal sections from monkeys aged between fetal day 55 and 11 years. BNP, COL4A2, and NPRA proteins were localized by immunohistochemistry. Labeling was imaged and quantified by confocal microscopy and optical densitometry. RESULTS. Quantitative PCR confirmed higher levels of PEDF and BNP and lower levels of COL4A2 in the macula at midgestation. PEDF mRNA was detected in ganglion cells (GCs) and the pigment epithelium (RPE). BNP mRNA was detected in GCs and macroglia, although BNP immunoreactivity (IR) was predominantly perivascular. COL4A2-IR was detected in large blood vessels and NPRA-IR on the retinal vascular endothelium, GC axons in fetal retinas, and cone axons at all ages. Optical densitometry showed a graded expression of PEDF and BNP at all ages, with highest levels of expression in GCs in the developing fovea. CONCLUSIONS. Because the retinal vessels initially form in the GC layer, it is likely that PEDF has a key role in defining and maintaining the foveal avascular area. The precise role of BNP is unclear, but it may include both antiangiogenic and natriuretic functions

    Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina

    Get PDF
    INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.Funding provided by Australian Research Council Centres of Excellence Program Grant (CE0561903)

    670-nm light treatment reduces complement propagation following retinal degeneration

    Get PDF
    AIM: Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. METHODS: Sprague–Dawley (SD) rats were pretreated with 9 J/cm(2) 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). RESULTS: Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. CONCLUSIONS: Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy
    • …
    corecore