6,294 research outputs found

    Investigation of all Ricci semi-symmetric and all conformally semi-symmetric spacetimes

    Full text link
    We find all Ricci semi-symmetric as well as all conformally semi-symmetric spacetimes. Neither of these properties implies the other. We verify that only conformally flat spacetimes can be Ricci semi-symmetric without being conformally semi-symmetric and show that only vacuum spacetimes and spacetimes with just a Λ\Lambda-term can be Ricci semi-symmetric without being conformally semi-symmetric.Comment: 4 pages, 1 tabl

    Dynamics of conduction blocks in a model of paced cardiac tissue

    Full text link
    We study numerically the dynamics of conduction blocks using a detailed electrophysiological model. We find that this dynamics depends critically on the size of the paced region. Small pacing regions lead to stationary conduction blocks while larger pacing regions can lead to conduction blocks that travel periodically towards the pacing region. We show that this size-dependence dynamics can lead to a novel arrhythmogenic mechanism. Furthermore, we show that the essential phenomena can be captured in a much simpler coupled-map model.Comment: 8 pages 6 figure

    The factorization method for systems with a complex action -a test in Random Matrix Theory for finite density QCD-

    Get PDF
    Monte Carlo simulations of systems with a complex action are known to be extremely difficult. A new approach to this problem based on a factorization property of distribution functions of observables has been proposed recently. The method can be applied to any system with a complex action, and it eliminates the so-called overlap problem completely. We test the new approach in a Random Matrix Theory for finite density QCD, where we are able to reproduce the exact results for the quark number density. The achieved system size is large enough to extract the thermodynamic limit. Our results provide a clear understanding of how the expected first order phase transition is induced by the imaginary part of the action.Comment: 27 pages, 25 figure

    Matrix convex functions with applications to weighted centers for semidefinite programming

    Get PDF
    In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new notion of weighted convex centers for semidefinite programming (SDP) and show that, with this definition, some known properties of weighted centers for linear programming can be extended to SDP. We also show how the calculus rules for matrix convex functions can be used in the implementation of barrier methods for optimization problems involving nonlinear matrix functions

    Partial Response to Platinum Doublets in Refractory EGFR-Positive Non-Small Cell Lung Cancer Patients after RRx-001: Evidence of Episensitization.

    Get PDF
    RRx-001, an experimental systemically non-toxic epi-immunotherapeutic agent, which potentiates the resensitization of resistant cancer cells to formerly effective therapies, is under active investigation in several clinical trials that are based on sequential or concomitant rechallenge to resistant first- or second-line regimens. One of these trials is designated TRIPLE THREAT (NCT02489903), because it explores the conditioning or priming effect of RRx-001 on three tumor types - non-small cell lung cancer (NSCLC), small cell lung cancer and high-grade neuroendocrine tumors - prior to re-administration of platinum doublets. In follow-up to a recent case study, which describes early monotherapeutic benefit with RRx-001 in a refractory EGFR-mutated NSCLC tumor, we present subsequent evidence of a radiological partial response to reintroduced platinum doublets after RRx-001. For the 50% of patients with EGFR-mutated NSCLC who progress on EGFR-tyrosine kinase inhibitors (without evidence of a T790M mutations) as well as platinum doublets and pemetrexed/taxane, no other clinically established treatment options exist. A retrial of these therapies in EGFR-positive NSCLC patients via priming with epigenetic agents such as RRx-001 constitutes a strategy to 'episensitize' tumors (i.e. reverse resistance by epigenetic means) and to extend overall survival

    Testing of quantum phase in matter wave optics

    Full text link
    Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res and Mandel is obtained for continuous Gaussian signals with phase modulated mean.Since signals in quantum theory are discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory approximation for fitting the phase distribution of almost any state the optimal phase estimation offers in certain cases a measurable better performance. This has been demonstrated in neutron--optical experiment.Comment: 8 pages, 4 figure

    Site-selective measurement of coupled spin pairs in an organic semiconductor

    Get PDF
    From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet quintet (S=1,2) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3–5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems

    Approximating the coefficients in semilinear stochastic partial differential equations

    Get PDF
    We investigate, in the setting of UMD Banach spaces E, the continuous dependence on the data A, F, G and X_0 of mild solutions of semilinear stochastic evolution equations with multiplicative noise of the form dX(t) = [AX(t) + F(t,X(t))]dt + G(t,X(t))dW_H(t), X(0)=X_0, where W_H is a cylindrical Brownian motion on a Hilbert space H. We prove continuous dependence of the compensated solutions X(t)-e^{tA}X_0 in the norms L^p(\Omega;C^\lambda([0,T];E)) assuming that the approximating operators A_n are uniformly sectorial and converge to A in the strong resolvent sense, and that the approximating nonlinearities F_n and G_n are uniformly Lipschitz continuous in suitable norms and converge to F and G pointwise. Our results are applied to a class of semilinear parabolic SPDEs with finite-dimensional multiplicative noise.Comment: Referee's comments have been incorporate
    corecore