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Abstract

In this paper, we develop various calculus rules for general smooth matrix-valued functions and for
the class of matrix convex (or concave) functions first introduced by Löwner and Kraus in 1930s.
Then we use these calculus rules and the matrix convex function − log X to study a new notion of
weighted centers for semidefinite programming (SDP) and show that, with this definition, some
known properties of weighted centers for linear programming can be extended to SDP. We also
show how the calculus rules for matrix convex functions can be used in the implementation of
barrier methods for optimization problems involving nonlinear matrix functions.
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1 Introduction

For any real-valued function f , one can define a corresponding matrix-valued function f(X) on the
space of real symmetric matrices by applying f to the eigenvalues in the spectral decomposition of X.
Matrix functions have played an important role in scientific computing and engineering. Well-known
examples of matrix function include

√
X (the square root function of a positive semidefinite matrix),

and eX (the exponential function of a square matrix). In this paper, we study calculus rules for
general differentiable matrix valued functions and for a special class of matrix functions called matrix
convex functions. Historically, Löwner [13] first introduced the notion of matrix monotone functions
in 1934. Two years later, Löwner’s student Kraus extended his work to matrix convex functions;
see [11]. The standard matrix analysis books of Bhatia [1] and Horn and Johnson [10] contain more
historical notes and related literature on this class of matrix functions.

Our interest in matrix convex functions is motivated by the study of weighted central paths for
semidefinite programming (SDP). It is well known that many properties of interior point methods
for linear programming (LP) readily extend to SDP. However, there are also exceptions, one of these
being the notion of weighted centers. The latter is essential in the V -space interior-point algorithms
for linear programming. Recall that, given any positive weight vector w > 0 and a LP

min 〈c, x〉, s.t. Ax = b, x ≥ 0,

we can define the w-weighted primal center as the optimal solution of the following convex program:

min 〈c, x〉 − 〈w, log x〉, s.t. Ax = b, x ≥ 0,

where log x := (· · · , log xi, · · ·)T .1 The dual weighted center can be defined similarly. For LP, it
is well known that 1) each choice of weights uniquely determines a pair of primal-dual weighted
centers, and 2) the set of all primal-dual weighted centers completely fills up the relative interior of
the primal-dual feasible region. How can we extend the notion of weighted center and the associated
properties to SDP? A natural approach would be to define a weighted barrier function similar to
the function −〈w, log x〉 for the LP case. However, given a symmetric positive definite weight matrix
W � 0, there is no obvious way to place the weights on the eigenvalues of the matrix variable X in
the standard barrier function − log det X. This difficulty has led researchers [6,18] to define weighted
centers for SDP using the weighted center equations rather than through an auxiliary SDP with an
appropriately weighted objective (as is the case of LP). However, these existing approaches [6,18] not
only lack an optimization interpretation but also can lead to complications of non-uniqueness of the
primal-dual pair of weighted centers. In this paper, we propose to use −〈W, log X〉 as the weighted
barrier function to define a W -weighted center for SDP. It is easy to verify that when W and X are

1Throughout this paper, log will represent the natural logarithm.
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both diagonal and positive, then −〈W, log X〉 simply reduces to the usual barrier function −〈w, log x〉
for linear programming. To ensure the convexity and develop derivative formulas for the proposed
barrier function −〈W, log X〉, we are led to study the calculus rules for the matrix function − log X,
which, by the theory of Löwner and Kraus, is matrix convex.

It turns out that the calculus rules for matrix-valued functions can be developed in two different
ways by either using an integral representation or using eigenvalues of the matrix variable. The
integral approach relies on a basic characterization result of Löwner and Kraus to develop the desired
derivative formulas for matrix monotone functions, while the eigenvalue approach is based on the use
of divided differences and is applicable to more general smooth matrix-valued functions; see Section 3.
As an application of these calculus rules, we define the weighted center of an SDP using the barrier
function −〈W, log X〉, and study various properties of the resulting notion of weighted center for SDP
(Section 4). In particular, we show that for any W � 0 the W -center exists uniquely. However, the
set of all weighted centers (as W varies in the set of positive definite matrices) do not fill up the
primal-dual feasible set. Moreover, we will show how the calculus rules can be applied to matrix
convex programming problems (Section 5).

Prior to our study, there has been extensive work on the analytic properties and calculus rules
of a matrix-valued function. In the work of [4], it is shown that the matrix function f(X) inherits
from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet
differentiability, continuous differentiability, as well as semismoothness. In contrast to our work, the
focus of [4] and the related work [12, 19] is on the first order (directional) derivatives by using the
nonsmooth analysis of matrix functions. The main applications of the resulting first order differential
formula are in the smoothing/semismooth Newton methods for solving various complementarity
problems. In addition, we remark that matrix functions have also played a significant role in quantum
physics [8], quantum information theory [16] and in signal processing [7]. Analysis of smooth convex
functions associated with the second-order cone can be found in [6] and [3].

Our notations are fairly standard. We will use Hn, Hn
+, and Hn

++ to denote the set of n× n Her-
mitian matrices, Hermitian positive semidefinite matrices, and Hermitian positive definite matrices
respectively. Similarly, Sn, Sn

+, and Sn
++ will signify real symmetric n× n matrices, symmetric pos-

itive semidefinite matrices, and symmetric positive definite matrices respectively. For generality, we
shall first use the Hermitian terms, and later for notational convenience restrict to the real case when
we discuss the calculus rules. In addition, we use the notation X � Y (X � Y ) to mean X−Y ∈ Hn

+

(X − Y ∈ Hn
++). For any interval J ⊆ <, we let Hn(J) denote the space of all Hermitian n × n

matrices whose eigenvalues all fall within J . Clearly, Hn((−∞,+∞)) = Hn, Hn([0,+∞)) = Hn
+, and

Hn((0,+∞)) = Hn
++.
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2 Matrix functions

Consider a real function f : J 7→ <. Now we will define the primary matrix function of f . For a given
Z ∈ Hn(J), let its diagonal decomposition be Z = QHDQ where QHQ = I and D is a real-valued
diagonal matrix. Since Djj ∈ J , j = 1, ..., n, let f(D) = diag (f(D11), ..., f(Dnn). Then, the matrix
function f(Z) is defined as

f(Z) := QHf(D)Q. (1)

Although the matrix decomposition of Z may not be unique, the above matrix function is uniquely
defined, i.e., it does not depend on the particular decomposition matrices Q and D. Clearly, f(Z) ∈
Hn for any Z ∈ Hn(J). The following definitions follow naturally.

Definition 2.1 A function f : J 7→ < is said to be a matrix monotone function on Hn(J) if

f(X) � f(Y ) whenever X, Y ∈ Hn(J) and X � Y.

Note that for n = 1 this corresponds to the usual concept monotonically non-decreasing function.

Definition 2.2 A function f : J 7→ < is said to be a matrix convex function on Hn(J) if

(1− α)f(X) + αf(Y ) � f((1− α)X + αY ))

for all X, Y ∈ Hn(J) and all α ∈ [0, 1].

Definition 2.3 A function f : J 7→ < is said to be a strictly matrix convex function on Hn(J) if

(1− α)f(X) + αf(Y ) � f((1− α)X + αY ))

for all X, Y ∈ Hn(J) with X − Y nonsingular, and all α ∈ (0, 1).

A function f is said to be (strictly) matrix concave whenever −f is a (strictly) matrix convex function.
The following fundamental characterization of matrix monotone functions is due to Löwner [13].
Chapter 6 of reference [10] contains more detailed discussions on this and other related results.

Theorem 2.4 Let J be an open (finite or infinite) interval in <, and f : J 7→ <. The primary
matrix function of f on the set of Hermitian matrices with spectrum in J is monotone for each n ≥ 1
if and only if f can be continued to an analytic function on the upper half of the complex plane
that maps the upper half of the complex plane into itself. Moreover, these are precisely the functions
f : J 7→ < that can be described explicitly in the following form:

f(x) = αx + β +
∫
<

[
1

u− x
− u

u2 + 1

]
dµ(u), (2)
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for all x ∈ J , where α, β ∈ < with α ≥ 0, and dµ is a positive Borel measure on < that has no mass
in the interval J and for which the integral ∫

<

dµ(u)
1 + u2

is finite.

Note that the requirement that dµ(u) has no mass in the interval J is natural, in view of the
denominator u−x. For practical purposes, it is convenient to consider measures of the form dµ(u) =
m(t)dt where m(t) ≥ 0 for all t ∈ < and m(t) = 0 for all t ∈ J . For instance, if J = (0,∞) and we
choose m(t) = 1 for all t ≤ 0 and m(t) = 0 for t > 0, then f(x) = αx + β + log x; if J = (0,∞) and
we choose m(t) =

√
−t/π for all t ≤ 0 and m(t) = 0 for t > 0, then f(x) = αx+β +

√
x−1/

√
2. This

in turn shows that both log x and
√

x are matrix monotone functions. Similarly, one can show that
xα with 0 < α < 1 is matrix monotone in general. In fact, we shall see below that these functions are
also matrix concave. In contrast to the ordinary functions, the monotonicity and the concavity for
the matrix functions are closely related. Moreover, in his original paper [13], Löwner also established
the connection between the monotonicity and the differentiability. Below is a direct proof of the
matrix monotonicity and the matrix concavity of the functions −1/x on (0,∞).

Lemma 2.5 The real valued function on (0,∞) defined as x 7→ −x−1 is both a matrix monotone
function and a strictly matrix concave function.

Proof. The monotonicity follows immediately from the following identity, which holds for positive
definite n× n matrices X and Y :

X−1 − Y −1 = Y −1/2(Y 1/2X−1Y 1/2)1/2Y −1/2(Y −X)Y −1/2(Y 1/2X−1Y 1/2)1/2Y −1/2.

The matrix (strict) concavity follows from the following identity, which holds for n × n positive
definite matrices X and Y with 0 ≤ α ≤ 1:

αX−1 + (1− α)Y −1 − [αX + (1− α)Y ]−1

= α(1− α)X−1(Y −X)Y −1[αY −1 + (1− α)X−1]−1Y −1(Y −X)X−1.

Q.E.D.

Lemma 2.6 For all u ≤ 0, the function fu(x) = 1/(u−x) is a monotone and strictly concave matrix
function.
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Proof. This follows immediately from Lemma 2.5 by a change of variable: fu(x) = −x̃−1 if we put
x̃ = x− u. Q.E.D.

Therefore we can prove the following result:

Theorem 2.7 If a function f : (0,∞) → < is a monotone matrix function on Hn
+ for all n ≥ 1, then

it is also a matrix concave function for all n ≥ 1. Moreover, f is a strictly matrix concave function
on Hn

+ for all n ≥ 1 provided the Borel measure dµ has positive mass.

Proof. This is a consequence of Theorem 2.4, using Lemma 2.6 and noting that the matrix concavity
is preserved under summation and multiplication of a nonnegative number. Q.E.D.

In particular, since

log x =
∫ 0

−∞

[
1

u− x
− u

u2 + 1

]
du, (3)

where x > 0, it follows from Theorem 2.7 that the lg function is matrix monotone and strictly matrix
concave. Moreover, we have the following explicit expression:

log X =
∫ 0

−∞

[
(uI −X)−1 − u

u2 + 1
I

]
du.

3 Calculating the derivatives of matrix monotone functions

In this section we discuss how to calculate the derivatives of the log matrix function. It turns out that
there are two different ways to accomplish this goal: either using an integral representation (Subsec-
tion 3.1) or using a finite difference representation (Subsection 3.2). Although the two approaches
are theoretically equivalent, they lead to distinct expressions which are useful in different application
contexts.

3.1 An integral representation

We first introduce the following definition.

Definition 3.1 Let J be an open real interval and let f : J 7→ < be a three times continuously
differentiable function; i.e., f ∈ C3(J). Then the first three derivatives are defined implicitly by the
following Taylor expansion

f(X + H) = f(X) + f (1)(X)[H] + f (2)(X)[H,H] + f (3)(X)[H,H, H] + o(‖H‖3),
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for each X ∈ Hn(J) and all H ∈ Hn, where f (1)(X), f (2)(X), and f (3)(X) are Hermitian symmetric
multi-linear mappings on the space Hn.

We remark here that the kth derivative in the above definition differs from the conventional one
by a factor of 1/k! (k = 2, 3), mainly for notational simplicity. The first simple observation is that
the calculation of derivatives of matrix functions can be reduced to the case of diagonal matrices.
This is summarized below.

Proposition 3.2 Let J be an open real interval and let f ∈ C3(J). Let X ∈ Hn(J). Choose a
diagonal decomposition X = QHDQ. Then the following formulas hold true for all H ∈ Sn (with
K = QHQH):

f (1)(X)[H] = QH(f (1)(D)[K])Q,

f (2)(X)[H,H] = QH(f (2)(D)[K, K])Q,

f (3)(X)[H,H, H] = QH(f (3)(D)[K, K,K])Q.

Proof. The proposition follows immediately from the identity

f(X + H)− f(X) = QH(f(D + K)− f(D))Q

and from the implicit definition of the derivatives of f at X and at D. Q.E.D.

In the remainder of the paper, we shall focus on the real case. Suppose that W ∈ Sn
++. Let

b(X) = −〈W, log X〉 (4)

for X ∈ Sn
++.

Theorem 3.3 The following formulas hold true:

b(1)(X)[H] = −
∫ 0

−∞
〈W, (uI −X)−1H(uI −X)−1〉du,

b(2)(X)[H,H] =
∫ 0

−∞
〈W, (uI −X)−1H(uI −X)−1H(uI −X)−1〉du,

b(3)(X)[H,H, H] = −
∫ 0

−∞
〈W, (uI −X)−1H(uI −X)−1H(uI −X)−1H(uI −X)−1〉du,

for all H ∈ Sn.

Before we prove Theorem 3.3, we comment that the expression for the first order derivative
b(1)(X)[H] is well-known in various fields: for example, it has been used in signal processing [7], in
the physics literature [8] and in quantum information theory [16]. To prove Theorem 3.3, let us first
introduce two lemmas.
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Lemma 3.4 The first three derivatives of the matrix function f : (0,+∞) 7→ < defined by f(x) = x−1

are given by the following formulas

f (1)(X)[H] = −X−1HX−1,

f (2)(X)[H,H] = X−1HX−1HX−1,

f (3)(X)[H,H, H] = −X−1HX−1HX−1HX−1,

for all H ∈ Sn.

Proof. We have, by definition,

(X + H)−1 = X−1 + f (1)(X)[H] + f (2)(X)[H,H] + f (3)(X)[H,H, H] + o(‖H‖3).

Multiplying both sides from the right with (X + H), expanding brackets, and equating linear,
quadratic and cubic functions of H respectively, gives the following three equations:

X−1H + f (1)(X)[H]X = 0,

f (1)(X)[H]H + f (2)(X)[H,H]X = 0,

f (2)(X)[H,H]H + f (3)(X)[H,H, H]X = 0.

These equations can be solved successively, starting with the first one, to give desired formulas.
Q.E.D.

By shifting the variable, we obtain the derivative formulas for the function fu(x) = (u− x)−1

f (1)
u (X)[H] = (uI −X)−1H(uI −X)−1,

f (2)
u (X)[H,H] = −(uI −X)−1H(uI −X)−1H(uI −X)−1, (5)

f (3)
u (X)[H,H, H] = (uI −X)−1H(uI −X)−1H(uI −X)−1H(uI −X)−1,

for all H ∈ Sn.

Proof of Theorem 3.3: We start with the identity (3). This gives the following formula for the
barrier:

b(X) = −
∫ 0

−∞

〈
W,

[
(uI −X)−1 − u

u2 + 1
I

]〉
du =

∫ ∞

0

〈
W,

[
(uI + X)−1 − u

u2 + 1
I

]〉
du.

Differentiating inside the integral and using (5) gives the required formulas for the first three deriva-
tives of b. Q.E.D.

The ranges for the integrations can also be changed to <+ for convenience, as we shall do in the
next section; that is,

b(1)(X)[H] = −
∫ ∞

0
〈W, (uI + X)−1H(uI + X)−1〉du, (6)
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b(2)(X)[H,H] = −
∫ ∞

0
〈W, (uI + X)−1H(uI + X)−1H(uI + X)−1〉du, (7)

b(3)(X)[H,H, H] = −
∫ ∞

0
〈W, (uI + X)−1H(uI + X)−1H(uI + X)−1H(uI + X)−1〉du. (8)

One immediate consequence of Theorem 3.3 is that b(X) is indeed a matrix concave function. This
is because formula (7) implies that for any X ∈ Sn

++, W ∈ Sn
+ and H ∈ Sn we always have

b(2)(X)[H,H] ≤ 0.

By a similar argument and using Löwner’s theorem (Theorem 2.7), we can extend the derivative
formulas for b(X) to the general matrix monotone functions.

Theorem 3.5 Let f : (0,∞) 7→ < be a matrix monotone function, i.e., there is a Borel measure
dµ(u) on <− such that

f(x) = αx + β +
∫ 0

−∞

[
1

u− x
− u

u2 + 1

]
dµ(u),

where the integral ∫ 0

−∞

dµ(u)
1 + u2

< ∞.

Then, for X ∈ Sn
++ and H ∈ Sn, there holds

f (1)(X)(H) =
∫ 0

−∞
(uI −X)−1H(uI −X)−1dµ(u),

f (2)(X)[H,H] = −
∫ 0

−∞
(uI −X)−1H(uI −X)−1H(uI −X)−1dµ(u),

f (3)(X)[H,H, H] =
∫ 0

−∞
(uI −X)−1H(uI −X)−1H(uI −X)−1H(uI −X)−1dµ(u).

3.2 An eigenvalue representation

In this subsection we use an alternative way to compute the derivatives of the barrier function
b(X) = −〈W, log X〉. We do so by means of divided differences. Let J be a real interval and let
f : J → < be a k-times continuously differentiable function, that is, f ∈ Ck(J). We define the
divided differences f [i] : J i → <, 0 ≤ i ≤ k, of f to be the continuous functions defined recursively
as follows:

f [0] = f,

f [i+1](λ1, . . . , λi+1) =
f [i](λ1, . . . , λi−1, λi)− f [i](λ1, . . . , λi−1, λi+1)

λi − λi+1
,

for i = 0, . . . , k − 1, if λ1, . . . , λi+1 are distinct.
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For other values of λ1, . . . , λi+1, f [i+1] is defined by continuity. For example,

f [1](λ, λ) = f ′(λ), f [2](λ, λ, λ) =
1
2
f ′′(λ), f [i](λ, . . . , λ) =

1
i!

dif

dxi
(λ).

These functions are symmetric, i.e., the value of the function is invariant with respect to the permu-
tation of its entries.

For any 1 ≤ i ≤ n, we write Ei,i for the diagonal n× n-matrix which has 1 on the (i, i)-place and
zero everywhere else. Below is our main result.

Theorem 3.6 Let J be a real interval and let f : J 7→ < be a function. Consider a diagonal matrix
X = Diag(λ1, . . . , λn) whose spectrum is contained in J .

1. For any H ∈ Sn and f ∈ C1(J),

f (1)(X)[H] =
n∑

i,j=1

f [1](λi, λj)Ei,iHEj,j .

2. For any H ∈ Sn and f ∈ C2(J),

f (2)(X)[H,H] =
n∑

i,j,k=1

f [2](λi, λj , λk)Ei,iHEj,jHEk,k.

3. For any H ∈ Sn and f ∈ C3(J),

f (3)(X)[H,H, H] =
n∑

i,j,k,l=1

f [3](λi, λj , λk, λl)Ei,iHEj,jHEk,kHEl,l.

Notice that the formula for the first derivative can be simplified using the Hadamard product of
two matrices: writing f [1](X) for the n × n-symmetric matrix whose (i, j)-entry is f [1](λi, λj), we
obtain

f (1)(X)[H] = f [1](X) ◦H. (9)

To illustrate Theorem 3.6 let us take a few steps. First we introduce the following result.

Lemma 3.7 If f(x) = xr, then

1. f [1](κ, λ) =
∑

k + l = r − 1

k, l ≥ 0, integers

κkλl, whenever r ≥ 1.
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2. f [2](κ, λ, µ) =
∑

k + l + m = r − 2

k, l, m ≥ 0, integers

κkλlµm, whenever r ≥ 2.

3. f [3](κ, λ, µ, ν) =
∑

k + l + m + p = r − 3

k, l, m, p ≥ 0, integers

κkλlµmνp, whenever r ≥ 3.

Proof. The first formula follows from the definition

f [1](κ, λ) =
κr − λr

κ− λ
,

for κ 6= λ, which, by the formula for geometric progression, equals
∑

k,l κ
kλl, where the summation

is over nonnegative integers k, l with sum r − 1. The second formula is due to

f [2](κ, λ, µ) =
f [1](κ, λ)− f [1](κ, µ)

λ− µ

=

∑
k + l = r − 1

k, l ≥ 0, integers

(
κkλl − κkµl

)

λ− µ

=
∑

k + l = r − 1

k, l ≥ 0, integers

κk
∑

p + q = l − 1

p, q ≥ 0, integers

λpµq

=
∑

k + l + m = r − 2

k, l, m ≥ 0, integers

κkλlµm.

The last formula can be established in a similar way. Q.E.D.

Lemma 3.8 Theorem 3.6 holds true for power functions f(x) = xr, with r a nonnegative integer.

Proof. Notice that

f(X + H)− f(X) = (X + H)r −Xr =
∑

k + l = r − 1

k, l ≥ 0, integers

XkHX l + o(‖H‖).

Writing the diagonal matrix X as X =
n∑

i=1

λiEi,i in the above expression and expanding the products

yields

f(X + H)− f(X) =
n∑

i,j=1

∑
k + l = r − 1

k, l ≥ 0, integers

λk
i λ

l
jEi,i

kHEj,j
l + o(‖H‖)
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=
n∑

i,j=1

∑
k + l = r − 1

k, l ≥ 0, integers

λk
i λ

l
jEi,iHEj,j + o(‖H‖)

=
∑
i,j

f [1](λi, λj)Ei,iHEj,j + o(‖H‖),

where first step is due to Ei,iEj,j = 0 whenever i 6= j, the second step follows from Ek
i,i = Ei,i,

El
j,j = Ej,j , and the last step is due to Lemma 3.7. This proves the first formula. The other two

formulas can be established in a similar manner. Q.E.D.

Lemma 3.8 shows that Theorem 3.6 holds for power functions. Taking linear combinations, we
see immediately that the theorem holds for polynomials. This further suggests that the theorem
holds for general functions with sufficient smoothness. A rigorous proof of Theorem 3.6 requires a
careful analysis of the local behavior of f(X + H) using the Lipschitzian continuity of the eigen-
decomposition of X + H. Our proof is an extension of the first order differentiability argument used
in [4]. Since the complete proof is tedious, we relegate it to an appendix at the end of the paper.

We emphasize that Theorem 3.6 is applicable to general (smooth) functions. In this sense, it
is much more general than the corresponding expressions in Theorem 3.5 which are valid only for
matrix monotone functions. Now we apply Theorem 3.6 to the barrier function b(X) = −〈W, log X〉.

Theorem 3.9 For any H ∈ Sn, the following formulas hold true for the barrier function b(X) =
−〈W, log X〉 at a positive definite diagonal matrix X = Diag(λ1, . . . , λn):

1. b(1)(X)[H] = −
n∑

i,j=1

log[1](λi, λj)〈W,Ei,iHEj,j〉;

2. b(2)(X)[H,H] = −
n∑

i,j,k=1

log[2](λi, λj , λk)〈W,Ei,iHEj,jHEk,k〉;

3. b(3)(X)[H,H, H] = −
n∑

i,j,k,l=1

log[3](λi, λj , λk, λl)〈W,Ei,iHEj,jHEk,kHEl,l〉.

By combining Theorem 3.9 and Proposition 3.2, we can derive similar derivative formulas for
general matrices admitting a diagonal decomposition. Notice that the derivative formulas above
require the divided differences of log x. Unfortunately, this is not so easy to compute in a direct way.
However, it is possible to do this indirectly by computing the divided differences first for the function
x 7→ x−1, and then for the functions x 7→ fu(x) = (u − x)−1, and finally using relation (3). This
leads to the same formula as in the previous section. We will only display here the formulas for the
derivatives of the primary matrix functions of the function x 7→ −x−1.
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Proposition 3.10 Let f(x) = −x−1 for x ∈ (0,∞). The following formulas hold true for the
first three derivatives of the primary matrix function f(X) at any positive diagonal matrix X =
Diag(λ1, . . . , λn):

1. f (1)(X)[H] =
n∑

k,l=1

λ−1
k λ−1

l Ek,kHEl,l,

2. f (2)(X)[H,H] =
n∑

k,l,m=1

λ−1
k λ−1

l λ−1
m Ek,kHEl,lHEm,m,

3. f (3)(X)[H,H, H] =
n∑

k,l,m,n=1

λ−1
k λ−1

l λ−1
m λ−1

n Ek,kHEl,lHEm,mHEn,n,

for all H ∈ Sn.

Proof. We only need to compute the divided differences for the function f(x) = −x−1. We claim

1. f [1](κ, λ) = (κλ)−1,

2. f [2](κ, λ, µ) = (κλµ)−1,

3. f [3](κ, λ, µ, ν) = (κλµν)−1,

for all κ, λ, µ, ν ≥ 0. To see the first formula, we note f [1](κ, λ) = −κ−1+λ−1

κ−λ = (κλ)−1, for κ 6= λ, as
desired. Continuing in the same way we can verify the remaining two formulas. Q.E.D.

As a remark, we notice that the formula for the first derivative can also be rewritten as

f (1)(X)[H] = f [1](X) ◦H.

while the second derivative can be written alternatively as

f (2)(X)[H,H] =
n∑

k,l,m=1

λ−1
k λ−1

l λ−1
m hklhlm.

Finally, we can use Theorem 3.9 to derive some simple properties for matrix convex functions.

Proposition 3.11 For any matrix convex function f(X) and any 1 ≤ j ≤ n, there holds

Mj :=
(
f [2](λi, λj , λk)

)
n×n

� 0

for all X ∈ Sn
++ and H ∈ Sn.
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Proof. In light of Proposition 3.2, we only need to consider the case where X = diag (λ1, λ2, ..., λn)
is a positive diagonal matrix. Then, Theorem 3.6 asserts that

f (2)(X)[H,H] =

 n∑
j=1

f [2](λi, λj , λk)hijhjk


n×n

.

Take any x, y ∈ <n with yi 6= 0, i = 1, ..., n. Let w = x ◦ y−1 and H = yyT . We have

wT f (2)(X)[H,H]w =
n∑

j=1

n∑
i,k=1

f [2](λi, λj , λk)
xi

yi
yiyjyjyk

xk

yk

=
n∑

j=1

 n∑
i,k=1

f [2](λi, λj , λk)xixk

 y2
j

=
n∑

j=1

(xT Mjx)y2
j

≥ 0,

where the last step follows from matrix convexity which implies f (2)(X)[H,H] � 0. This shows that
Mj � 0 for all j = 1, ..., n. Q.E.D.

Let us now specialize Theorem 3.6 to the matrix exponential function eX (which is known not to
be matrix convex so Theorem 3.5 does not apply).

Proposition 3.12 For any symmetric X and H, there holds

(eX)(1)[H] =
∫ 1

0
e(1−u)XHeuXdu (10)

(eX)(2)[H,H] =
∫ 1

0

∫ 1

0
(1− u)euXHev(1−u)XHe(1−v)(1−u)Xdudv (11)

Proof. We only need to prove the proposition for diagonal matrix X = Diag(λ1, λ2, · · · , λn). As-
sume that λi’s are all distinct. In light of (9), we can compute the (i, j)-th entry (i 6= j) of the matrix
differential (eX)(1)[H]:

(eX)(1)[H]i,j =
[
(eX)[1] ◦H

]
i,j

=
eλi − eλj

λi − λj
Hi,j

=
∫ 1

0
eλiue(1−u)λjHi,jdu

=
[∫ 1

0
euXHe(1−u)Xdu

]
i,j

,
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where the third equality follows from the identity

eλi − eλj

λi − λj
=
∫ 1

0
eλiue(1−u)λjdu. (12)

This proves (10) for the case of i 6= j. The case of i = j can be considered in a similar fashion.

Now we prove the second order differential formula (11). Consider the (i, j)-th entry (i 6= j) of
the second order matrix differential (eX)(2)[H,H]i,j :

(eX)(2)[H,H]i,j =
∑
k

(eX)[2](λi, λk, λj)Hi,kHk,j

=
∑
k

(eX)[2](λi, λk, λj)Hi,kHk,j

=
∑
k

eλi−eλk

λi−λk
− eλi−eλj

λi−λj

λk − λj
Hi,kHk,j

=
∑
k

∫ 1
0 eλiue(1−u)λkdu−

∫ 1
0 eλiue(1−u)λjdu

λk − λj
Hi,kHk,j

=
∑
k

∫ 1

0
eλiu

e(1−u)λk − e(1−u)λj

λk − λj
Hi,kHk,jdu.

Now we use the identity (12) to obtain

(eX)(2)[H,H]i,j =
∑
k

∫ 1

0
(1− u)eλiu

∫ 1

0
ev(1−u)λke(1−v)(1−u)λjHi,kHk,jdvdu

=
∫ 1

0

∫ 1

0
(1− u)

[
euXHev(1−u)XHe(1−v)(1−u)X

]
i,j

dvdu,

which establishes (11). Q.E.D.

Notice that the first order derivative formula (10) for the matrix exponential function eX has
been used extensively in the physics literature [8] and in applied mathematics [15].

4 Weighted centers for semidefinite programming

Consider the following standard semidefinite programming (SDP) problem

(P ) minimize 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, ...,m

X � 0,
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and its dual
(D) maximize bT y

subject to
m∑

i=1

yiAi + Z = C

Z � 0.

The study of various aspects of SDP can be found in [20]. It is well known that many properties
of the interior point methods for linear programming (LP) readily extend to SDP. However, one
exception is the notion of weighted centers. Sturm and Zhang [18] proposed to define the weighted
centers of the SDP problems (P ) and (D) based on the eigenvalues of the product of a pair of primal-
dual feasible solutions XZ. However, such pair may not be unique. Chua [6] proposed the weighted
centers based on a diagonal and positive weight matrix W . Since the log X is a matrix function, it
is now natural to define the weighted centers by means of the barrier function b(X) = −〈W, log X〉.
To be specific, given any weight matrix W � 0, let us consider

(Pw) minimize 〈C,X〉 − 〈W, log X〉
subject to 〈Ai, X〉 = bi, i = 1, ...,m.

We shall first establish the existence of a primal weighted center based on (Pw). Note the following
lemmas.

Lemma 4.1 For any X � 0 and t > 0 it holds that b(tX) = b(X) + (log t) tr W .

Proof. Let the orthonormal decomposition of X be X = P T DP where P is an orthonormal matrix
and D is positive diagonal. Then

log(tX) = P T (log(tD))P = P T (log D + (log t) I) P = X + (log t) I,

and so
b(tX) = 〈W, log(tX)〉 = b(X) + (log t) tr W.

Q.E.D.

Lemma 4.2 Let K ⊆ <n be a closed convex cone, K∗ be its dual cone, and L ⊆ <n be a subspace.
Let c ∈ <n be a given vector. Suppose that int K∗ ∩ (c + L⊥) 6= ∅. In that case, if there is any
0 6= x ∈ K ∩ L then it must follow that cT x > 0.

This result is also known as the extended Farkas lemma; see e.g. [17] for discussions.

Theorem 4.3 Suppose that both (P ) and (D) satisfy the Slater condition. Then for any symmetric
W � 0 there exists a unique optimal solution for (Pw).
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Proof. Let Xk be a sequence of feasible solutions for (Pw) such that 〈C,Xk〉−〈W, log Xk〉 converges
to the optimal value of (Pw). First we see that ‖Xk‖ must be bounded, for otherwise we may assume
without loss of generality that limk→∞ ‖Xk‖ = ∞ and

lim
k→∞

Xk

‖Xk‖
= X̂.

In that case, since by Lemma 4.2 we know that 〈C, X̂〉 > 0, and also using Lemma 4.1 it follows that

〈C,Xk〉 −
〈
W, log Xk

〉
= ‖Xk‖

〈
C,

Xk

‖Xk‖

〉
−
〈

W, log
Xk

‖Xk‖

〉
− log ‖Xk‖trW →∞,

which is impossible. This shows that (Pw) must indeed have attainable optimal solution. Due to the
strict convexity of the objective function, such optimal solution is unique. Q.E.D.

Let Xp
w be the optimal solution for (Pw). Using Theorem 3.3 we obtain the following Karush-

Kuhn-Tucker optimality condition for Xp
w: ∃ yp ∈ <m such that

C −
m∑

i=1

yp
i Ai −

∫ ∞

0
(uI + Xp

w)−1W (uI + Xp
w)−1du = 0. (13)

Let us define a matrix mapping FW : Sn
+ 7→ Sn

+:

FW (X) :=
∫ ∞

0
(uI + X)−1W (uI + X)−1du.

Obviously, (13) induces a dual solution

Zp
w = C −

m∑
i=1

yp
i Ai = FW (Xp

w). (14)

For the same weight matrix W � 0, we can also consider the barrier problem for the dual:

(Dw) maximize bT y +

〈
W, log

(
C −

m∑
i=1

yiAi

)〉
.

Similar to Theorem 4.3, we can show (Dw) has a unique optimal solution, which we denote by yd.
Again, by Theorem 3.3, the KKT optimality condition for (Dw) reduces to

bi −
〈

Ai,

∫ ∞

0

(
vI + C −

m∑
i=1

yd
i Ai

)−1

W

(
vI + C −

m∑
i=1

yd
i Ai

)−1

dv

〉
= 0, i = 1, 2, ...,m. (15)

The condition (15) induces a primal solution

Xd
w =

∫ ∞

0

(
vI + C −

m∑
i=1

yd
i Ai

)−1

W

(
vI + C −

m∑
i=1

yd
i Ai

)−1

dv = FW

(
C −

m∑
i=1

yd
i Ai

)
. (16)
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It is well known that, for linear programming, the weighted center pairs {Xp
w, Zp

w}, {Xd
w, Zd

w}
coincide; furthermore, both pairs of centers are diagonal and therefore they commute and satisfy
Xp

wZp
w = Xd

wZd
w = W . Interestingly, in the SDP case, the two pairs of centers {Xp

w, Zp
w}, {Xd

w, Zd
w}

do not coincide and the commutability fails to hold in general. This can be seen from the following
simple 2× 2 example: let

A1 =
1
2
E1,1, A2 = E2,2, A3 = E1,2, b1 = b2 = b3 = 1, C = E1,1 + E2,2 + E1,2, W = C + E1,1,

where Ei,j denotes the symmetric matrix with all entries zero except at (i, j)- and (j, i)-th entries
which equal 1. In this case, there is a unique primal feasible matrix which is also equal to the
W -center: Xp

w = Diag{2, 1}. The corresponding dual center is

Zp
w = FW (Xp

w) = log[1](2, 1) ◦W =

[
1 log 2

log 2 1

]
.

Clearly, the matrices Xp
w and Zp

w do not commute. Moreover, we can directly compute the dual
weighted center pair {Xd

w, Zd
w} to verify that Xd

w = Xp
w = Diag{2, 1}, and Zd

w 6= Zp
w. Alternatively,

we can prove the latter inequality by contradiction. In particular, suppose Zd
w = Zp

w. Then the
condition (15) would imply Xp

w = FW (Zp
w). Notice that

Zp
w = Q

[
1 + log 2 0

0 1− log 2

]
QT , Q′WQ =

1
2

[
5 1
1 1

]
, where Q =

1√
2

[
1 1
1 −1

]
.

Using the definition of FW and simplifying the integral yields

Xp
w =

∫ ∞

0
(uI + Zp

w)−1W (uI + Zp
w)−1du

= Q

(∫ ∞

0
(uI + Diag{1 + log 2, 1− log 2})−1Q′WQ(uI + Diag{1 + log 2, 1− log 2})−1du

)
Q′

= Q
(
log[1](1 + log 2, 1− log 2) ◦ (Q′WQ)

)
Q′

= Q

 5
2(1+log 2)

log(1+log 2)−log(1−log 2)
4 log 2

log(1+log 2)−log(1−log 2)
4 log 2

1
2(1+log 2)

Q′

=

[
2.1690 −0.0765
−0.0765 0.9370

]
,

contradicting the condition Xp
w = Diag{2, 1}. Therefore, we have established Zp

w 6= Zd
w.

The lack of commutability between Xp
w and Zp

w (and similarly Xd
w, Zd

w) further implies that the
property Xp

wZp
w = Xd

wZd
w = W cannot hold in the SDP case. Interestingly, a related property does

hold as shown in the next result.

Theorem 4.4 Given any W � 0, let {Xp
w, Zp

w}, {Xd
w, Zd

w} be defined by (13)-(14) and (15)-(16)
respectively. Then, there holds

trXp
wZp

w = tr Xd
wZd

w = tr W.
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Proof. Since Xp
w and (uI + Xp

w)−1 commute for any u ≥ 0, it follows that

trXp
wZp

w = tr
∫ ∞

0
Xp

w(uI + Xp
w)−1W (uI + Xp

w)−1du

= tr
∫ ∞

0
(uI + Xp

w)−1Xp
wW (uI + Xp

w)−1du

= tr
∫ ∞

0
Xp

wW (uI + Xp
w)−2du

= trXp
wW (Xp

w)−1

= trW,

where the third and the last steps are due to the identity tr AB = tr BA for any matrices A and B.
Similarly, we can show that tr Xd

wZd
w = tr W . Q.E.D.

Another property of weighted centers for linear programming is the fact that they fill up the
entire primal and dual feasible region. Interestingly, this property no longer holds in the SDP case
as is illustrated in the following example. Consider the primal SDP (P ) with m = 2n and

C = Blockdiag

{[
1 1− ε

1− ε 1

]
, In−2,n−2

}
, Ai = El,k, bi = δl,k + δl,1,

for l = 1, 2 and k = 1, 2, ..., n, or k = 1, 2 and l = 1, 2, ..., n, where El,k denotes the n × n matrix
whose entries are all zero except the (l, k)- and (k, l)-th entries which are 1; ε > 0 is a constant to be
chosen later; δl,k denotes the usual Kronecker function. In this case, the primal feasible set consists
of all matrices of the form

X = Blockdiag

{[
1 1− ε

1− ε 1

]
,Mn−2,n−2

}
, with M � 0. (17)

We claim that there cannot be any weight matrix W � 0 and any primal feasible matrix X which
together with the dual feasible matrix Z = C forms a pair of W -centers for this SDP (P), provided
ε is small. Specifically, suppose there holds

C = Blockdiag

{[
1 1− ε

1− ε 1

]
, In−2,n−2

}
=
∫ ∞

0
(uI + X)−1W (uI + X)−1du

for some primal feasible matrix X of the form (17) and some symmetric weight matrix W = [wij ] � 0.
Since X has a block diagonal structure, the first principal 2×2 submatrix of the above right-hand-side
integral can be easily calculated to be[

1
2w11 w12 log 2

w12 log 2 w22

]
.
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Equating this submatrix with that of C yields

w11 = 2, w22 = 1, w12 =
1− ε

log 2
.

This implies

w11w22 − w2
12 = 2− (1− ε)2

log2 2
< 0, for sufficiently small ε.

This contradicts the positive definiteness of W matrix. This shows that C cannot be a dual center
Zp

w for any choice of W � 0 and any primal feasible Xp
w.

5 Matrix convex programming

It is elementary to see that if f is matrix concave and g is matrix monotone, then the composite
function g ◦ f is matrix concave. Also, the direct sum of matrix concave functions remain matrix
concave.

Let us now consider the following matrix convex programming problem

(MCP ) minimize 〈C,X〉
subject to fj(X) � Bj , j = 1, ...,m,

X ∈ Sn,

where fj is matrix concave, j = 1, ...,m. This problem can be regarded as a kind of ‘nonlinear’ (but
still convex) SDP. A different type of ‘nonlinear’ SDP model was studied in [21], with a provable
polynomial-time computational complexity bound. The above model (MCP) is useful. For example,
in many signal processing applications [14], we have fj(X) = CT

j X + XCj −X2 for some matrix Cj .
A standard approach to handle the concave quadratic matrix inequality fj(X) � Bj is to convert it to
an equivalent linear matrix inequality by using Schur complement. However, such a conversion, while
resulting in a polynomial time algorithm, will increase the problem dimension substantially, often
leading to numerical difficulties in the solution of the resulting large scale SDP. A numerically more
appealing approach is to treat the quadratic matrix inequality fj(X) � Bj directly using a standard
logarithmic barrier −tr log(fj(X)− Bj). In this way, there is no increase in problem dimension nor
the need to manage the sparse problem structure of an otherwise large SDP.

Let us consider a standard logarithmic barrier method for solving (MCP ). Suppose that the
Slater condition holds for (MCP ), and then we introduce a barrier function for (MCP ) as

g(X) := −tr
m∑

j=1

log(fj(X)−Bj).
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The key step now is the ability to compute the Newton direction for the function

〈C,X〉+ µg(X),

at a given iterative point. Denote gj(X) := − log(fj(X) − Bj), j = 1, ...,m, which are all matrix
concave functions.

Consider an iterative point Xk ∈ Sn with fj(Xk) � Bj , j = 1, ...,m. Let Xk = QDkQT be an
orthonormal decomposition of Xk, and Ck := QT CQ. Proposition 3.2 suggests that

g
(1)
j (Xk)[H] = Q

(
g
(1)
j (Dk)[QT HQ]

)
QT

g
(2)
j (Xk)[H,H] = Q

(
g
(2)
j (Dk)[QT HQ, QT HQ]

)
QT

for j = 1, ...,m. Hence, by letting H̄ = QT HQ, and using Theorem 3.6 we have

g(1)(Xk)[H] =
m∑

j=1

tr g
(1)
j (Dk)[H̄] =

m∑
j=1

n∑
p=1

g
[1]
j (dk

p, d
k
p)h̄pp

g(2)(Xk)[H,H] =
m∑

j=1

tr g
(2)
j (Dk)[H̄, H̄] =

m∑
j=1

n∑
p,q=1

g
[2]
j (dk

p, d
k
q , d

k
p)h̄

2
pq.

Therefore, the Newton direction is given by H = QH̄QT , where H̄ = (h̄pq)n×n ∈ Sn is the
minimizer of the following separable convex quadratic function

n∑
p,q=1

Ck
pqh̄pq + µ

m∑
j=1

n∑
p=1

g
[1]
j (dk

p, d
k
p)h̄pp + µ

m∑
j=1

n∑
p,q=1

g
[2]
j (dk

p, d
k
q , d

k
p)h̄

2
pq.

In particular, we have

h̄pq =



− Ck
pq

µ

m∑
j=1

[
g
[2]
j (dk

p, d
k
q , d

k
p) + g

[2]
j (dk

q , d
k
p, d

k
q )
] , for p 6= q;

−
Ck

pp+µ

m∑
j=1

g
[1]
j (dk

p, d
k
p)

2µ

m∑
j=1

g
[2]
j (dk

p, d
k
p, d

k
p)

, for p = q.

As a conclusion, we see that the total number of basic operations required to assemble such a
Newton direction is O(mn3).
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A Appendix: Proof of Theorem 3.6

Part 1 of Theorem 3.6 was established in [4]. We will only show part 2 here. The proof of part 3 is
similar and therefore omitted. To establish the second order derivative formula, we consider a diagonal
matrix X = Diag{λ1, ..., λn} and suppose f : J → < is differentiable at λ1, ..., λn. We can without
loss of generality assume that the diagonal entries of X are distinct and ordered: λ1 < · · · < λn.
[The case of equal diagonal entries can be handled using a simple continuity argument.] By Lemma
3 in reference [5], there exist scalars η > 0 and ε > 0 such that for any H ∈ Sn with ‖H‖ ≤ ε, there
exists an orthnormal matrix P with the property that

X + H = P T Diag{µ1, µ2, ..., µn}P, with µ1 ≤ · · · ≤ µn, and ‖P − I‖ ≤ η‖H‖. (18)

This implies that the off-diagonal entries of P are of order O(‖H‖). Moreover, according to a
perturbation result of Weyl for eigenvalues of symmetric matrices (see [1, p. 63]),

|λi − µi| ≤ ‖H‖, ∀ i = 1, ..., n. (19)

Notice that the orthonormality of P together with (18) imply

1 = P 2
ii +

∑
k 6=i

P 2
ki = P 2

ii + O(‖H‖2), (20)

0 = PiiPij + PjiPjj +
∑

k 6=i,j

PkiPkj = PiiPij + PjiPjj + O(‖H‖2), i 6= j. (21)

We will show that, for any H ∈ Sn with ‖H‖ ≤ ε, such that

f(X + H)− f(X)− f (1)(X)[H]− f (2)(X)[H,H] = o(‖H‖2), (22)

where the constants in o(·) depend on f and X only, and f (1)(X)[H], f (2)(X)[H,H] are given by

f (1)(X)[H] =
n∑

i,j=1

f [1](λi, λj)Ei,iHEj,j

f (2)(X)[H,H] =
n∑

i,j,k=1

f [2](λi, λj , λk)Ei,iHEj,jHEk,k.

This would show that f(X) is twice differentiable at the diagonal matrix X with the first and second
order directional derivatives given by f (1)(X)[H] and f (2)(X)[H,H] respectively. Substituting the
definitions of f (1)(X)[H] and f (2)(X)[H,H] into the left side of (22) yields

f(X + H)− f(X)− f (1)(X)[H]− f (2)(X)[H,H]

= P T Diag{f(µ1), . . . , f(µn)}P −Diag{λ1, . . . , λn}

−
n∑

i,j=1

f [1](λi, λj)Ei,iHEj,j −
n∑

i,j,k=1

f [2](λi, λk, λj)Ei,iHEk,kHEj,j . (23)
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We need to show that each entry of the above matrix equation is o(‖H‖2). We separate two cases:
diagonal entries and off-diagonal entries.

Let us first consider the (i, i)-th diagonal entry of the above matrix equation (23). Notice that
from the relation X + H = P T Diag{µ1, . . . , µn}P (cf. (18)) we have

λi + Hii =
n∑

k=1

P 2
kiµk. (24)

Substituting this relation into the (i, i)-th entry of (23) and simplifying yields

the (i, i)-th entry =
n∑

k=1

P 2
kif(µk)− f(λi)− f ′(λi)Hii −

n∑
k=1

f [2](λi, λk, λi)H2
ki

= f(µi)− f(λi)− f ′(λi)(µi − λi) +
∑
k 6=i

(
f(µk)− f(µi)− f ′(λi)(µk − µi)

)
P 2

ki

−
n∑

k=1

f [2](λi, λk, λi)H2
ki. (25)

We need to bound the last term of (25) which can be written as

n∑
k=1

f [2](λi, λk, λi)H2
ki =

1
2
f ′′(λi)H2

ii +
∑
k 6=i

f (2)(λi, λk, λi)H2
ki, (26)

where we have used the fact f [2](λi, λi, λi) = 1
2f ′′(λi). Therefore, we need to bound the two terms of

the above expression separately. The first term can be estimated as follows:

f ′′(λi)H2
ii

(a)
= f ′′(λi)

(
λi −

n∑
k=1

P 2
kiµk

)2

= f ′′(λi)

(
λi − µi +

n∑
k=1

P 2
ki(µi − µk)

)2

(b)
= f ′′(λi) (λi − µi)

2 + 2f ′′(λi) (λi − µi)
∑
k 6=i

P 2
ki(µi − µk) + O(‖H‖4)

(c)
= f ′′(λi) (λi − µi)

2 + O(‖H‖3), (27)

where (a) follows from (24), (b) is due to Pki = O(‖H‖) for k 6= i (cf. (18)), and (c) follows from
(19). Next we estimate the second term of (26). Since X + H = P T Diag{µ1, ...µn}P , it follows that
Hki =

∑
j PjiPjkµj for i 6= k. Thus, we have

H2
ki =

 n∑
j=1

PjiPjkµj

2

=

PiiPikµi + PkiPkkµk +
∑

j 6=i,k

PjiPjkµj

2
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(i)
=

PkiPkk(µk − µi) +
∑

j 6=i,k

PjiPjk(µj − µi)

2

(ii)
= P 2

kiP
2
kk(µk − µi)2 + O(‖H‖3)

(iii)
= P 2

ki(λk − λi)2 + O(‖H‖3),

where step (i) follows from the orthonormality condition
∑

j PjiPjk = 0 when i 6= k, step (ii) is due
to the fact all the off-diagonal entries of P are of order O(‖H‖), and step (iii) follows from the fact
P 2

kk = 1 + O(‖H‖2) (see (20)) and the fact |λk − λi| = |µk − µi| + O(‖H‖) (see (19)). The above
estimate implies∑

k 6=i

f [2](λi, λk, λi)H2
ki =

∑
k 6=i

f [2](λi, λk, λi)P 2
ki(λk − λi)2 + O(‖H‖3)

=
∑
k 6=i

(
f(λk)− f(λi)− f ′(λi)(λk − λi)

)
P 2

ki + O(‖H‖3),

where the last step follows from the definition of f [2](λi, λk, λi). Combining this with (25), (26) and
(27), we obtain

the (i, i)-th entry = f(µi)− f(λi)− f ′(λi)(µi − λi) +
∑
k 6=i

(
f(µk)− f(µi)− f ′(λi)(µk − µi)

)
P 2

ki

−
n∑

k=1

f [2](λi, λk, λi)H2
ki

= f(µi)− f(λi)− f ′(λi)(µi − λi) +
∑
k 6=i

(
f(µk)− f(µi)− f ′(λi)(µk − µi)

)
P 2

ki

−1
2
f ′′(λi)(λi − µi)2 −

∑
k 6=i

(
f(λk)− f(λi)− f ′(λi)(λk − λi)

)
P 2

ki + O(‖H‖3)

(i)
= f(µi)− f(λi)− f ′(λi)(µi − λi)−

1
2
f ′′(λi)(λi − µi)2 + O(‖H‖3)

(ii)
= o(‖H‖2),

where step (i) follows from Pki = O(‖H‖) and |λi − µi| ≤ ‖H‖ for all i, and step (ii) is due to the
second order differentiability of f at λi.

It remains to show that the off-diagonal entries of (23) are of order o(‖H‖2). To this end, consider
the (i, j)-th entry of (23), i 6= j:

the (i, j)-th entry =
n∑

k=1

PkiPkjf(µk)− f [1](λi, λj)Hij −
n∑

k=1

f [2](λi, λk, λj)HikHkj

=
n∑

k=1

PkiPkjf(µk)− f [1](λi, λj)Hij︸ ︷︷ ︸
term I

−
∑

k 6=i,j

f [2](λi, λk, λj)HikHkj︸ ︷︷ ︸
term II
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− (f [2](λi, λi, λj)Hii + f [2](λi, λj , λj)Hjj)Hij︸ ︷︷ ︸
term III

. (28)

Since
H = P T Diag{µ1, ..., µn}P −X = P T Diag{µ1, ..., µn}P −Diag{λ1, ..., λn},

it follows that

H`,m =



n∑
k=1

Pk`Pkmµk − λ`, if ` = m,

n∑
k=1

Pk`Pkmµk, else.

Substituting this into term I and using (18)–(21), we can obtain the following alternative expression
for term I:

term I = PjiPjj(f(µj)− f(µi)− f [1](λi, λj)(µj − µi)) + (PiiPij + PjiPjj)(f(µi)− f [1](λi, λj)µi)

+
∑

k 6=i,j

PkiPkj(f(µk)− f [1](λi, λj)µk). (29)

To estimate term II, we first notice that for k 6= i:

Hik =
n∑

m=1

PmiPmkµm

= PiiPikµi + PkiPkkµk + O(‖H‖2)

= PkkPki(µk − µi) + (PiiPik + PkiPkk)µi + O(‖H‖2)

= PkkPki(µk − µi) + O(‖H‖2)

= Pki(µk − µi) + O(‖H‖2), (30)

where the second, fourth and fifth steps follow from (18) and (21). Similarly, we have

Hkj = Pkj(µk − µj) + O(‖H‖2). (31)

Since, for k 6= i, j, both Pki and Pkj are of order O(‖H‖), we can use (30) and (31) to estimate term
II as follows:

term II =
∑

k 6=i,j

f [2](λi, λk, λj)HikHkj

=
∑

k 6=i,j

f [2](λi, λk, λj)(µk − µi)(µk − µj)PkiPkj + O(‖H‖3)

=
∑

k 6=i,j

f [2](λi, λk, λj)(λk − λi)(λk − λj)PkiPkj + O(‖H‖3),

where the last step is due to (19). Since

f [2](λi, λk, λj)(λk − λi)(λk − λj) = (f(λk)− f [1](λi, λj)λk)− (f(λi)− f [1](λi, λj)λi)
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and ∑
k 6=i,j

PkiPkj = −(PiiPij + PjiPjj),

it follows that

term II =
∑

k 6=i,j

PkiPkj(f(λk)− f [1](λi, λj)λk)− (f(λi)− f [1](λi, λj)λi)
∑

k 6=i,j

PkiPkj + O(‖H‖3)

=
∑

k 6=i,j

PkiPkj(f(λk)− f [1](λi, λj)λk) + (PiiPij + PjiPjj)(f(λi)− f [1](λi, λj)λi) + O(‖H‖3).

By (19), we have |µi − λi| ≤ ‖H‖, we further obtain

term II =
∑

k 6=i,j

PkiPkj(f(λk)−f [1](λi, λj)λk)+(PiiPij+PjiPjj)(f(µi)−f [1](λi, λj)µi)+O(‖H‖3). (32)

To estimate term III, we first notice that

Hii = −λi +
n∑

k=1

P 2
kiµk = P 2

iiµi − λi + O(‖H‖2) = µi − λi + O(‖H‖2)

and similarly
Hjj = µj − λj + O(‖H‖2).

Since Hij = O(‖H‖), it follows that

term III = (f [2](λi, λi, λj)Hii + f [2](λi, λj , λj)Hjj)Hij

= (f [2](λi, λi, λj)(µi − λi) + f [2](λi, λj , λj)(µj − λj))Hij + O(‖H‖3)

By an argument similar to (30), we have

Hij = PjjPji(µj − µi) + O(‖H‖2).

Thus, we have

term III = PjjPji(f [2](λi, λi, λj)(µi − λi) + f [2](λi, λj , λj)(µj − λj))(µj − µi) + O(‖H‖3), (33)

where we have used the fact that |µi − λi| ≤ ‖H‖ and |µj − λj | ≤ ‖H‖. It can be checked from the
definition of second order divided difference f [2] that

(λi − λj)(f [2](λi, λi, λj)(µi − λi) + f [2](λi, λj , λj)(µj − λj))

= f [1](λi, λj)(µj − µi) + (f(λi) + (µi − λi)f ′(λi))− (f(λj) + (µj − λj)f ′(λj))

= f [1](λi, λj)(µj − µi) + f(µi)− f(µj) + o(‖H‖),
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where the last step is due to the second order differentiability of f at λi and λj . Substituting this
bound into (33) and noting Pji = O(‖H‖), we obtain

term III = PjjPji(f [1](λi, λj)(µj − µi) + f(µi)− f(µj))
(µj − µi)
λi − λj

+ o(‖H‖2)

= PjjPji(f(µj)− f(µi)− f [1](λi, λj)(µj − µi)) + o(‖H‖2), (34)

where the last step follows from the fact (cf. (19))

(µj − µi)
λi − λj

= −1 + O(‖H‖).

Combining the estimates (29), (32), (34) with (28), we immediately obtain

the (i, j)-th entry = o(‖H‖2),

as desired. This completes the proof of part 2 of Theorem 3.6.

References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.

[2] J.S. Chen, “The Convex and Monotone Functions Associated with Second-Order Cone,” Working
Paper, 2004.

[3] J.S. Chen, X. Chen, P. Tseng, “Analysis of Nonsmooth Vector-Valued Functions Associated with
Second-Order Cones,” Mathematical Programming 101 (2004) 95–117.

[4] X. Chen, H.-D. Qi, and P. Tseng, “Analysis of Nonsmooth Symmetric Matrix Functions with
Applications to Semidefinite Complementarity Problems,” SIAM Journal Optimization 13 (2003)
960–985.

[5] X. Chen and P. Tseng, “Non-interior Continuation Methods for Solving Semidefinite Comple-
mentarity Problems,” Math. Programming, to appear.

[6] C.B. Chua, “A New Notion of Weighted Centers for Semidefinite Programming,” Working Paper,
Department of IEOR, Cornell University (2004).

[7] T. Georgiou, “Relative Entropy and the Multi-variable Multi-Dimensional Moment Problems,”
Submitted to IEEE Transactions on Information Theory (2004).

[8] R.P. Feynman, “An Operator Calculus Having Applications in Quantum Electrodynamics,”
Physical Review 84 (1951) 108–128.

28



[9] S.P. Heims and E.T. Jaynes, “Theory of Gyromagnetic Effects and Some Related Magnetic
Phenomena,” Reviews of Modern Physics 34 (1962) 143–165.

[10] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Campbridge University Press (1991).
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