6 research outputs found

    Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos

    Get PDF
    The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical ÎąC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.publishedVersio

    Cell cycle regulation of Oikopleura dioica. A study of the cyclin CDK-complement

    No full text
    Regulation of the eukaryotic cell cycle is a fundamental biological process which controls proliferation of all eukaryote cells. Progression through the cell cycle is highly dependent on its core regulators; Cyclins and associated Cyclin-dependent kinases (CDKs), which orchestrate a coordinated series of events through growth in the first gap phase (G1), initiation of DNA synthesis (S), the second gap phase (G2) and mitosis (M). Variations of the cell cycle include the canonical mitotic cell cycle, giving rise to identical sister cells, meiosis, giving rise to haploid gametes, and various endoreduplicative cycles, which increase ploidy of cells through repetitive S-phases without intervening cytokinesis. Although limited to a very few specialized cell types in vertebrates, endoreduplication is widespread amongst invertebrates. The marine urochordate Oikopleura dioica, deploys somatic endocycling as a main developmental strategy, which facilitates rapid growth during a very short life cycle. O. dioica females also take advantage of the elevated transcriptional capacity of endocycling nurse nuclei within the coenocyst; a single cell compartment shared by hundreds of nurse and meiotic nuclei. Being a large transparent ovary, the coenocyst provides a unique model to study both endocycling and meiosis within a shared cytoplasm. The urochordates also belong to the closest sister group to vertebrates, which places knowledge about the O. dioica cell cycle in an interesting evolutionary context. By searching the fully sequenced genome of O. dioica we annotated the Cyclin- CDK complement of O. dioica, which revealed amplified Cyclin D and Cyclin B complements. We also identified a surprising amplification of CDK1, an important Mphase regulator, which is highly conserved from yeast to vertebrates. Interestingly, the majority of somatic cells grow through endocycling during O. dioica development, which should favor conditions with low CDK1 activity. This observation therefore raised the question; why does an organism that develops mainly through a mechanism favoring reduced CDK1 activity have several paralogs of this particular cell cycle regulator? In order to dissect possible explanations, we analyzed expression of odCDK1 paralogs throughout O. dioica development revealing diverse expression throughout mitotic and endocycling proliferation, in addition to male- and femaleiv specific expression during gametogenesis. We also assessed functions amongst the odCDK1 paralogs, which displayed variations within the highly conserved PSTAIRE motif. Because the PSTAIRE motif is decisive in Cyclin interaction and thus indirectly affects substrate specificity, functional variation amongst odCDK1 paralogs might occur. Targeted knockdown of odCDK1 expression by injection of double stranded RNA (dsRNA) revealed non-redundant and essential functions for two odCDK1 paralogs in producing viable oocytes, representing the first known case in metazoan models where CDK1 paralogs have sub-functionalized in the control of meiosis

    Functional specialization of chordate CDK1 paralogs during oogenic meiosis

    No full text
    <p>Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, <i>Oikopleura dioica</i>, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, <i>O. dioica</i> has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.</p
    corecore