8 research outputs found

    Looking inside the black box : a theory-based process evaluation alongside a randomised controlled trial of printed educational materials (the Ontario printed educational message, OPEM) to improve referral and prescribing practices in primary care in Ontario, Canada

    Get PDF
    Background: Randomised controlled trials of implementation strategies tell us whether (or not) an intervention results in changes in professional behaviour but little about the causal mechanisms that produce any change. Theory-based process evaluations collect data on theoretical constructs alongside randomised trials to explore possible causal mechanisms and effect modifiers. This is similar to measuring intermediate endpoints in clinical trials to further understand the biological basis of any observed effects (for example, measuring lipid profiles alongside trials of lipid lowering drugs where the primary endpoint could be reduction in vascular related deaths). This study protocol describes a theory-based process evaluation alongside the Ontario Printed Educational Message (OPEM) trial. We hypothesize that the OPEM interventions are most likely to operate through changes in physicians' behavioural intentions due to improved attitudes or subjective norms with little or no change in perceived behavioural control. We will test this hypothesis using a well-validated social cognition model, the theory of planned behaviour (TPB) that incorporates these constructs. Methods/design: We will develop theory-based surveys using standard methods based upon the TPB for the second and third replications, and survey a subsample of Ontario family physicians from each arm of the trial two months before and six months after the dissemination of the index edition of informed, the evidence based newsletter used for the interventions. In the third replication, our study will converge with the "TRY-ME" protocol (a second study conducted alongside the OPEM trial), in which the content of educational messages was constructed using both standard methods and methods informed by psychological theory. We will modify Dillman's total design method to maximise response rates. Preliminary analyses will initially assess the internal reliability of the measures and use regression to explore the relationships between predictor and dependent variable (intention to advise diabetic patients to have annual retinopathy screening and to prescribe thiazide diuretics for first line treatment of uncomplicated hypertension). We will then compare groups using methods appropriate for comparing independent samples to determine whether there have been changes in the predicted constructs (attitudes, subjective norms, or intentions) across the study groups as hypothesised, and will assess the convergence between the process evaluation results and the main trial results.The OPEM trial and OPEM process evaluation are funded by the Canadian Institute of Health Research (CIHR). The OPEM process evaluation study was developed as part of the CIHR funded interdisciplinary capacity enhancement team KT-ICEBeRG. Gaston Godin, Jeremy Grimshaw and France Légaré hold Canada Research Chairs. Louise Lemyre holds an R.S. McLaughlin Research Chair

    The influence of measurement error on calibration, discrimination, and overall estimation of a risk prediction model

    No full text
    Abstract Background Self-reported height and weight are commonly collected at the population level; however, they can be subject to measurement error. The impact of this error on predicted risk, discrimination, and calibration of a model that uses body mass index (BMI) to predict risk of diabetes incidence is not known. The objective of this study is to use simulation to quantify and describe the effect of random and systematic error in self-reported height and weight on the performance of a model for predicting diabetes. Methods Two general categories of error were examined: random (nondirectional) error and systematic (directional) error on an algorithm relating BMI in kg/m2 to probability of developing diabetes. The cohort used to develop the risk algorithm was derived from 23,403 Ontario residents that responded to the 1996/1997 National Population Health Survey linked to a population-based diabetes registry. The data and algorithm were then simulated to allow for estimation of the impact of these errors on predicted risk using the Hosmer-Lemeshow goodness-of-fit χ2 and C-statistic. Simulations were done 500 times with sample sizes of 9,177 for males and 10,618 for females. Results Simulation data successfully reproduced discrimination and calibration generated from population data. Increasing levels of random error in height and weight reduced the calibration and discrimination of the model. Random error biased the predicted risk upwards whereas systematic error biased predicted risk in the direction of the bias and reduced calibration; however, it did not affect discrimination. Conclusion This study demonstrates that random and systematic errors in self-reported health data have the potential to influence the performance of risk algorithms. Further research that quantifies the amount and direction of error can improve model performance by allowing for adjustments in exposure measurements.</p

    The influence of measurement error on calibration, discrimination, and overall estimation of a risk prediction model

    No full text
    Abstract Background Self-reported height and weight are commonly collected at the population level; however, they can be subject to measurement error. The impact of this error on predicted risk, discrimination, and calibration of a model that uses body mass index (BMI) to predict risk of diabetes incidence is not known. The objective of this study is to use simulation to quantify and describe the effect of random and systematic error in self-reported height and weight on the performance of a model for predicting diabetes. Methods Two general categories of error were examined: random (nondirectional) error and systematic (directional) error on an algorithm relating BMI in kg/m2 to probability of developing diabetes. The cohort used to develop the risk algorithm was derived from 23,403 Ontario residents that responded to the 1996/1997 National Population Health Survey linked to a population-based diabetes registry. The data and algorithm were then simulated to allow for estimation of the impact of these errors on predicted risk using the Hosmer-Lemeshow goodness-of-fit χ2 and C-statistic. Simulations were done 500 times with sample sizes of 9,177 for males and 10,618 for females. Results Simulation data successfully reproduced discrimination and calibration generated from population data. Increasing levels of random error in height and weight reduced the calibration and discrimination of the model. Random error biased the predicted risk upwards whereas systematic error biased predicted risk in the direction of the bias and reduced calibration; however, it did not affect discrimination. Conclusion This study demonstrates that random and systematic errors in self-reported health data have the potential to influence the performance of risk algorithms. Further research that quantifies the amount and direction of error can improve model performance by allowing for adjustments in exposure measurements
    corecore