32 research outputs found

    Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Get PDF
    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops

    Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature

    Get PDF
    The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements

    Time Since Stroke Onset, Quantitative Collateral Score, and Functional Outcome After Endovascular Treatment for Acute Ischemic Stroke

    Get PDF
    BACKGROUND AND OBJECTIVES: In patients with ischemic stroke undergoing endovascular treatment (EVT), time to treatment and collateral status are important prognostic factors and may be correlated. We aimed to assess the relation between time to CT angiography (CTA) and a quantitatively determined collateral score and to assess whether the collateral score modified the relation between time to recanalization and functional outcome. METHODS: We analyzed data from patients with acute ischemic stroke included in the Multicenter Randomized Controlled Trial of Endovascular Treatment for Acute Ischemic Stroke Registry between 2014 and 2017, who had a carotid terminus or M1 occlusion and were treated with EVT within 6.5 hours of symptom onset. A quantitative collateral score (qCS) was determined from baseline CTA using a validated automated image analysis algorithm. We also determined a 4-point visual collateral score (vCS). Multivariable regression models were used to assess the relations between time to imaging and the qCS and between the time to recanalization and functional outcome (90-day modified Rankin Scale score). An interaction term (time to recanalization × qCS) was entered in the latter model to test whether the qCS modifies this relation. Sensitivity analyses were performed using the vCS. RESULTS: We analyzed 1,813 patients. The median time from symptom onset to CTA was 91 minutes (interquartile range [IQR] 65–150 minutes), and the median qCS was 49% (IQR 25%–78%). Longer time to CTA was not associated with the log-transformed qCS (adjusted ÎČ per 30 minutes, 0.002, 95% CI −0.006 to 0.011). Both a higher qCS (adjusted common odds ratio [acOR] per 10% increase: 1.06, 95% CI 1.03–1.09) and shorter time to recanalization (acOR per 30 minutes: 1.17, 95% CI 1.13–1.22) were independently associated with a shift toward better functional outcome. The qCS did not modify the relation between time to recanalization and functional outcome (p for interaction: 0.28). Results from sensitivity analyses using the vCS were similar. DISCUSSION: In the first 6.5 hours of ischemic stroke caused by carotid terminus or M1 occlusion, the collateral status is unaffected by time to imaging, and the benefit of a shorter time to recanalization is independent of baseline collateral status

    Prehospital Stroke Triage:A Modeling Study on the Impact of Triage Tools in Different Regions

    Get PDF
    Background and purpose: Direct transportation to a thrombectomy-capable intervention center is beneficial for patients with ischemic stroke due to large vessel occlusion (LVO), but can delay intravenous thrombolytics (IVT). The aim of this modeling study was to estimate the effect of prehospital triage strategies on treatment delays and overtriage in different regions. Methods: We used data from two prospective cohort studies in the Netherlands: the Leiden Prehospital Stroke Study and the PRESTO study. We included stroke code patients within 6 h from symptom onset. We modeled outcomes of Rapid Arterial oCclusion Evaluation (RACE) scale triage and triage with a personalized decision tool, using drip-and-ship as reference. Main outcomes were overtriage (stroke code patients incorrectly triaged to an intervention center), reduced delay to endovascular thrombectomy (EVT), and delay to IVT. Results: We included 1798 stroke code patients from four ambulance regions. Per region, overtriage ranged from 1-13% (RACE triage) and 3-15% (personalized tool). Reduction of delay to EVT varied by region between 24 ± 5 min (n = 6) to 78 ± 3 (n = 2), while IVT delay increased with 5 (n = 5) to 15 min (n = 21) for non-LVO patients. The personalized tool reduced delay to EVT for more patients (25 ± 4 min [n = 8] to 49 ± 13 [n = 5]), while delaying IVT with 3-14 min (8-24 patients). In region C, most EVT patients were treated faster (reduction of delay to EVT 31 ± 6 min (n = 35), with RACE triage and the personalized tool. Conclusions: In this modeling study, we showed that prehospital triage reduced time to EVT without disproportionate IVT delay, compared to a drip-and-ship strategy. The effect of triage strategies and the associated overtriage varied between regions. Implementation of prehospital triage should therefore be considered on a regional level.</p

    Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants

    Get PDF
    Due to limited availability of arable land and the high market demand for vegetables around the world, cucurbit (cucumber, melon, and watermelon) and solanaceous (eggplant, pepper and tomato) crops are frequently cultivated under unfavourable soil and environmental conditions. These include thermal stress, drought and flooding, and contamination by persistent organic pollutants. Plants exposed exhibit various physiological and pathological disorders leading to stunted growth and severe fruit quality and yield loss. One way to avoid or reduce losses in production caused by adverse soil chemical and physical conditions and environmental stresses in vegetables would be to graft them onto rootstocks capable of reducing the effect of external stresses on the shoot. This review gives an actual overview how grafting can alleviate the adverse effects of environmental stresses on vegetable’s crop performance at agronomical, physiological, and biochemical levels. Implications for the selection and breeding of stress-tolerant rootstocks are discussed

    Short‐term exposure to atmospheric ammonia does not affect low‐temperature hardening of winter wheat

    No full text
    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was enhanced by 45% compared with the controls. During that period, water-soluble sugar content was not affected by NH3. After lowering the temperature to 4/3 degrees C, sugar content of the control plants doubled within 2 d, whereas in the plants exposed to NH3 it increased to a much lesser extent. Total nitrogen content further increased, leading to an 85% higher level in the NH3-exposed plants. Frost hardiness was not affected by atmospheric ammonia. It is concluded that winter wheat is tolerant to high ammonia concentrations, even under unfavourable growth conditions
    corecore