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To face future challenges in crop production dictated by global climate changes,
breeders and plant researchers collaborate to develop productive crops that are able
to withstand a wide range of biotic and abiotic stresses. However, crop selection
is often focused on shoot performance alone, as observation of root properties is
more complex and asks for artificial and extensive phenotyping platforms. In addition,
most root research focuses on development, while a direct link to the functionality of
plasticity in root development for tolerance is often lacking. In this paper we review
the currently known root system architecture (RSA) responses in Arabidopsis and a
number of crop species to a range of abiotic stresses, including nutrient limitation,
drought, salinity, flooding, and extreme temperatures. For each of these stresses, the
key molecular and cellular mechanisms underlying the RSA response are highlighted.
To explore the relevance for crop selection, we especially review and discuss studies
linking root architectural responses to stress tolerance. This will provide a first step
toward understanding the relevance of adaptive root development for a plant’s response
to its environment. We suggest that functional evidence on the role of root plasticity
will support breeders in their efforts to include root properties in their current selection
pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.

Keywords: abiotic stress tolerance, root system architecture (RSA), salinity, drought, nutrient limitation, flooding,
temperature stress tolerance, crop breeding

INTRODUCTION

From Optimal to Suboptimal Conditions – Closing the Yield Gap
The world population is growing rapidly and this is accompanied by an increased food demand.
In past decades, this growing food demand has been addressed by plant breeding consistent with
optimal conditions for plant growth. In agricultural practices, the use of fertilizers, irrigation,
pesticides, and other inputs can create these optimal conditions on the short-term. However,
increasing evidence exists for the negative consequences of these practices on the long-term.

First of all, irrigation accounts for almost 70% of all freshwater usage in the world (FAO and
ITPS, 2015). Freshwater scarcity is a big threat to the human population and the current water
usage for agriculture is not sustainable (Rosegrant et al., 2009). Furthermore, irrigation causes
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salinization of soils (Smedema and Shiati, 2002) and increases
leaching of fertilizer. This leaching, together with excess use
of fertilizer and deep tilling leads to higher greenhouse gas
emissions (Snyder et al., 2009).

These problems illustrate the unsustainability of creating the
optimal conditions our crops are selected for. In addition, climate
change will further increase this challenge. Agriculture will have
to deal with growing crops under suboptimal conditions, creating
a gap between the yield potential and the currently reached yield –
the so-called yield gap. An extensive research field tries to map
the current yield gap (Lobell et al., 2009; Licker et al., 2010;
Van Ittersum et al., 2013) with much focus on improving land
management practices (Lobell et al., 2009; Mueller et al., 2012).
In concert, plant breeding is shifting from creating “specialist”
cultivars that require optimal conditions for their performance
toward creating “robust” cultivars that can perform optimal in a
broad range of suboptimal conditions, with the ultimate goal of
closing the yield gap.

Crop yield is driven by the combination of climate, soil,
management, and genetics. Under optimal circumstances the soil
provides plants with stability, water, and nutrients. However,
soils are heterogeneous environments, strongly influenced by
outside factors. Nutrient deficiency, drought, salinity, flooding,
and temperature are major drivers of the current and future
yield gap. Researchers and breeders work together to develop
crops that are able to withstand these stresses (as reviewed
in Mickelbart et al., 2015). However, current crop selection
is mainly focused on the shoot, whereas most major drivers
of the yield gap affect soil properties, directly influencing the
root system. This paper will therefore focus on the potential
of optimizing root systems for improving crop abiotic stress
tolerance.

Roots Bridging the Yield Gap
Breeding efforts to improve crop yield are in general focused
on aboveground, shoot-related phenotypes, whereas the roots
as ‘hidden half ’ of the plant are still an under-utilized source
of crop improvement (Den Herder et al., 2010; Wachsman
et al., 2015). Trials aimed to select for new cultivars with
improved crop yield are in general performed under optimal
nutrient concentrations, which has often led to selection for
smaller and less plastic roots (White et al., 2013). Moreover,
modern cultivars develop in general faster and the earlier
initiation of shoot sinks stimulates the investment of biomass
into the shoots rather than into the roots. Modern wheat
cultivars indeed have smaller root sizes and root:shoot ratios
than older ones (Siddique et al., 1990; Waines and Ehdaie,
2007). Given the crucial role roots play in the establishment
and performance of plants, researchers have started ‘the
second green revolution’ to explore the possibility of yield
improvements through optimization of root systems (Lynch,
2007).

Because water and nutrients are not evenly distributed in the
soil, the spatial arrangement of the root system is crucial for
optimal use of the available resources. This spatial arrangement
of the root and its components is referred to as root system
architecture (RSA). Length, number, positioning, and angle of

FIGURE 1 | An overview of the different root types that together form
the root system. A dicot root system consists only of one primary root and
several orders of lateral roots. In addition, dicots can produce special
stress-induced shoot-born roots called adventitious roots. A monocot root
system produces additional axial roots, which can be separated in embryonic
seminal roots and non-embryonic shoot-born roots. There are several types of
shoot-borne roots, such as nodal and crown roots, often distinguished by the
exact place they develop and their increasing thickness. In monocots, the
primary and seminal roots are especially important during early seedling
establishment, but shoot-born roots soon take over and are responsible for
most of the water and nutrient uptake. All axial root types can produce several
orders of lateral roots.

root components (as described in Figure 1) together determine
RSA (Figure 2). These traits determine the soil volume that
is explored. In addition, the root surface area depends on
root hair development and root diameter. The ability to adjust
RSA is an important aspect of plant performance and its
plasticity to a large variety of abiotic conditions (Smith and
De Smet, 2012). Root development is guided by environmental
information that is integrated into decisions regarding how fast
and in which direction to grow, and where and when to develop
new lateral roots (Malamy, 2005). The limits of root system
plasticity are determined by intrinsic pathways governed by
genetic components (Pigliucci, 2005; Smith and De Smet, 2012;
Gifford et al., 2013; Jung and McCouch, 2013). Understanding
the development and architecture of roots, as well its plasticity,
holds thus great potential for stabilizing the productivity under
suboptimal conditions in the root environment (de Dorlodot
et al., 2007; Den Herder et al., 2010; Zhu et al., 2011). Although,
plants are capable of adjusting a wide range of developmental and
molecular processes in the root to cope with abiotic stress, this
review will mainly focus on the plasticity of RSA, their proposed
adaptive values, and its use in the selection and breeding of more
robust crops.
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FIGURE 2 | RSA is defined as the spatial configuration of root
components and determines the soil volume that can be explored by
the roots. Dicot roots consist of a main root and several orders of lateral
roots. Monocot roots contain in addition seminal roots and shoot-borne roots.
Each plant species has genetically defined limits to its RSA. Within these
limits, the RSA is plastic and external (abiotic stress) factors modulate the
length, number, positioning and angle of root components. The RSA plasticity
varies strongly among and within plant species. This figure illustrates the
modulations in RSA for a typical dicot root system.

NUTRIENT LIMITATION: ADAPTING RSA
FOR OPTIMAL FORAGING

Plants use macronutrients as the basis of proteins and nucleic
acids. Especially the availability of phosphorus (P) and nitrogen
(N) determine plant performance. Other nutrients are used
as co-factors for enzymes or to drive membrane transport.
Complications in nutrient acquisition can arise because of
nutrient shortage in the soil, but other factors such as pH, the
balance of different nutrients and soil composition also play a
role. For examples, high salinity can decrease the solubility and
thus availability of phosphate (Grattan and Grieve, 1998; Hu and
Schmidhalter, 2005).

Nutrient deficiencies are responsible for the major part
of currently observed yield gaps worldwide. Mueller et al.
(2012) estimated that for 73% of the areas with a yield
gap bigger than 25%, solely improving nutrient balances in
the soil could close this gap. This illustrates the impact of
nutrient imbalances and deficiencies on plant productivity.
If we also consider the high use of fertilizer in agriculture,
improving plants’ capability of dealing with nutrient deficiencies
and increasing their of nutrient acquisition is of major
importance.

Nutrients are distributed heterogeneously and often have a
strong vertical distribution pattern. Leaching on the one hand
and plant cycling on the other hand influence the nutrient
distribution pattern. Leaching is caused by vertical water flow
and takes nutrients down to lower soil layers, were water flow
decreases and nutrients accumulate. Plant cycling is based on
nutrients taken up from and cycled back to the soil, which
causes nutrients to deplete in the root zone and accumulate
in the topsoil. Horizontal distribution of nutrients is mainly
dependent on the plant distribution aboveground, leading to
higher nutrient accumulation underneath canopies. Vertical
distribution depends on the balance between leaching and plant
cycling, which differs strongly between nutrients. Low mobile
nutrients with a prominent role in plant growth, such as
phosphate and potassium, undergo high plant cycling, leading
to topsoil accumulation. In contrast, mobile nutrients, such
as nitrate and chloride, are subject to leaching leading to
accumulation in deeper soils (Jobbágy and Jackson, 2001, 2004).
The challenge for plants is to cope with this heterogeneous
and sometimes contrasting distribution of nutrients and other
resources. In agriculture, plant cycling is often reduced, due
to harvesting of plant material, increasing leaching and loss of
nutrients. To cope with this heterogeneity, plants can adapt their
RSA to specifically forage those parts of the soils where nutrient
availability is high.

Recently, RSA changes upon a wide range of nutrient
deficiencies have been mapped in Arabidopsis growing on agar
plates (Gruber et al., 2013). Each deficiency led to a distinct
response in RSA development, which is consistent with the
fact that not all nutrients have the same accumulation pattern
and thus ask for a different response. For example, the readily
available forms of the two most limiting nutrients, nitrate (NO3

−)
and phosphate (PO4

3−), have an almost opposite accumulation
pattern in the soil (Jobbágy and Jackson, 2001). Whereas
immobile phosphate accumulates in the topsoil, mobile nitrate
quickly leaches to deeper soils. This challenges the plant to
respond differently to a deficiency of these nutrients. Fortunately,
the RSA responses to these deficiencies have been mapped
extensively in both Arabidopsis and crop species, offering us many
insights in functional RSA development.

Topsoil Foraging for Phosphate
Phosphate is a building block of, for example, nucleic acids
and membrane phospholipids. Because of the high phosphate
demand of plants, limitation in phosphate has a strong effect on
plant growth (as reviewed in Péret et al., 2011; López-Arredondo
et al., 2014). Efficient uptake of phosphate is therefore essential.
High plant cycling, in combination with low mobility, leads to
accumulation of phosphate in the topsoil. To optimally forage the
soil for phosphate, plants need to develop a shallow root system
(as reviewed in Lynch and Brown, 2001). The RSA response
to phosphate deficiency in Arabidopsis is well-characterized (as
reviewed by Péret et al., 2011). A strong shift from main root
growth to lateral root growth is observed, which leads to a short
root with a high number of long laterals (Figure 3A; Williamson,
2001; Linkohr et al., 2002; López-Bucio et al., 2002; Gruber et al.,
2013). In addition, a strong proliferation of root hairs is observed.
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FIGURE 3 | The RSA responds to abiotic stress in different ways. This figure illustrates for dicots how length, angle and number of primary (blue) and lateral
roots (grey) change in response to phosphate deficiency (A), nitrate deficiency (B), drought (C) and salinity (D). The arrows indicate an either positive (to the right) or
negative effect (to the left).

These changes result in a shallow root system, optimal for topsoil
foraging.

For maize, a series of papers was published in which the value
of certain root traits for phosphate acquisition was evaluated
using a set of RILS distinctly different in these root traits.
Shallow rooting maize varieties showed increased net phosphate
acquisition, corrected for possible higher phosphate investments
(Zhu et al., 2005b). A big screen of 242 accessions of maize on
high and low phosphate availability confirmed the importance of
root plasticity under low phosphate conditions (Bayuelo-Jiménez
et al., 2011). Yield and biomass was increased for accessions with a
higher number of nodal and lateral roots. In addition, dense root
hair formation also correlated with higher biomass under low P
conditions.

Shallow root system development is a result of strong
investment in lateral root growth. Zhu and Lynch (2004)
confirmed that in maize enhanced lateral root formation is
beneficial for net phosphate acquisition. In comparison to
the primary root and other components of the root system,
lateral roots are cheap in terms of phosphate use. Similar
results were found for enhanced seminal root growth, which
is especially important for phosphate acquisition during early
seedling development (Zhu et al., 2006). Several studies show
that strigolactones are key regulators of both root and shoot
responses to the level of available phosphate (Koltai, 2011;
Ruyter-Spira et al., 2011; Mayzlish-Gati et al., 2012; Matthys

et al., 2016). The effect of strigolactones on RSA depends on
phosphate availability. Whereas strigolactones inhibit lateral root
emergence and elongation and promote primary root elongation
when phosphate is sufficient (Kapulnik et al., 2011a; Matthys
et al., 2016), the opposite is observed when phosphate is depleted
(Ruyter-Spira et al., 2011). Interestingly, a similar phosphate
dependent effect of ABA on lateral root development has recently
been observed (Kawa et al., 2016). The contrasting effect of
strigolactones is a result of modulation of auxin distribution and
sensitivity (Koltai et al., 2010; Ruyter-Spira et al., 2011; Mayzlish-
Gati et al., 2012), both underlying the strong shift from primary
to lateral root growth (López-Bucio et al., 2002; Nacry, 2005;
Pérez-Torres et al., 2008a,b; Miura et al., 2011). Addition of the
synthetic auxin NAA doubled expression levels of genes involved
in the cell cycle specifically during phosphate starvation (Pérez-
Torres et al., 2008b). Increased auxin sensitivity during phosphate
starvation appears to be explained by increased expression of the
auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1),
leading to increased degradation of AUX/IAA and released
repression on auxin response modules (Pérez-Torres et al.,
2008a). Interestingly, strigolactones have been shown to be
responsible for the increase of TIR1 expression during phosphate
limitation (Mayzlish-Gati et al., 2012).

The inhibition of primary root growth in Arabidopsis
(Col-0) in response to phosphate starvation has been shown
to be strong and irreversible (Sánchez-Calderón et al., 2005).
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During phosphate starvation, primary root development changes
drastically, shifting from indeterminate growth to determinate
growth (Sánchez-Calderón et al., 2005; Kawa et al., 2016).
Preceding this drastic shift, changes in the quiescence center
are observed, suggesting an important role during phosphate
starvation. Consistently, Svistoonoff et al. (2007) show that
specifically exposing the root cap to low phosphate is sufficient
to induce growth arrest in the primary root. Mutants lacking
determinate growth in low phosphate conditions show reduced
activation of the phosphate starvation rescue system (Sánchez-
Calderón et al., 2006). These findings suggest an important role
for the root cap in sensing environmental conditions.

During phosphate limitation, Arabidopsis develops a high
number of long root hairs (Bates and Lynch, 1996). Compared
to mutants lacking root hairs, wild type plants have a higher
phosphate uptake resulting in more plant growth (Bates and
Lynch, 2000). Gahoonia and Nielsen (1998) measured phosphate
uptake of root hairs by providing the radioisotope 32P to root
hairs of rye plants in the soil. The root hairs contributed
to a substantial amount of 63% of total phosphate uptake.
Consistently, a mutant of barley lacking root hairs took up half
the amount of phosphate compared to the wild type (Gahoonia
et al., 2001). Under low phosphate conditions, cultivars of barley
with long root hairs are able to sustain high yields, whereas
cultivars with short root hairs produce substantially less yield
(Gahoonia and Nielsen, 2004). Interestingly, no disadvantage
of root hair development under high phosphate availability is
found for either Arabidopsis and Barley (Bates and Lynch, 2000,
2001; Gahoonia and Nielsen, 2004). As for other root traits,
strigolactones seem to play a major role in the regulation of the
number and length of root hairs (Koltai et al., 2010; Kapulnik
et al., 2011a,b; Mayzlish-Gati et al., 2012).

Next to length and number of root components, the angle
of the roots also determines whether a root system develops
shallow or deep. Roots are able to sense gravity, allowing
the main root to grow down into the soil, a response called
gravitropism. Although lateral roots are also gravitropic, they
typically show a gravitropic setpoint angle (GSA; Rosquete
et al., 2013; Roychoudhry et al., 2013), resulting in non-vertical
emergence from the main root (see also salinity and drought
sections). Under low phosphate conditions, gravitropism could
be expected to counteract development of a shallow root system
ideal for topsoil foraging. In accordance, in common bean,
development of a shallow root system depends on the ability to
adjust the gravitropic offset angle. This ability indeed correlated
with its ability to cope with low phosphate conditions (Bonser
et al., 1995). Subsequent investigation of RILs with contrasting
root gravitropic offset angles showed a strong correlation with
phosphate acquisition and plant growth (Liao et al., 2004).

Deep Rooting and Selective Root
Placement for Nitrate
In contrast to phosphate, nitrate is highly mobile in soils and
is therefore prone to leaching. In environments where nitrate
is limiting, deeper soil layers can often offer nitrogen supplies.
Consistently, availability of phosphate and nitrate has contrasting

effects on RSA. Low nitrate availability in general limits plant
growth. However, low nitrate availability does not limit primary
and lateral root elongation, enabling the root system to reach
deeper layers of the soil (Figure 3B; Linkohr et al., 2002; Gruber
et al., 2013). This shift in investment results in an increase
in root:shoot ratio. For maize, a monocot species, reaching
greater rooting depth requires the development of a lower
number of crown roots. Maize genotypes with lower crown
root number showed 45% greater rooting depth, which was
accompanied with higher N acquisition (Saengwilai et al., 2014).
The biggest difference in N acquisition was found in deeper
layers, emphasizing the importance of a deep root system for
nitrogen acquisition.

Lateral root density is not affected by homogeneous nitrate
limitation. Interestingly, in a heterogeneous environment, a
strong increase in lateral root density in nitrate patches is
observed in both Arabidopsis and maize (Linkohr et al., 2002;
Dina in ’t Zandt et al., 2015). When plants are exposed to nitrate
patches, lateral root elongation rates outside the patches were
strongly decreased, indicating a shift of investment of resources.
Plants are thus able to selectively place their roots to efficiently
forage the soil. The mechanism of utilization of heterogeneously
distributed nutrients by selective placement of lateral roots in
or near nutrient enriched patches is best studied for nitrogen.
However, selective root placement for a wide range of nutrients
was already illustrated in 1975. A limited part of the root system
of barley was exposed to high concentrations of phosphate,
nitrate, ammonium, and potassium (Drew, 1975). For all of these
nutrients a strong proliferation of lateral roots in the zone of
high availability was observed. Growth of lateral roots in other
zones was strongly limited. This emphasizes the importance of
investigating this response for other nutrients.

The nitrate transporter NRT1.1 plays an important role in
perceiving nitrate levels in the soil. The nrt1.1 mutant displays
no increase in lateral root proliferation in nitrate rich patches
(Remans et al., 2006a), while the RSA response to homogeneous
nitrate limitation is not affected in this mutant, indicating that
this is not an effect of reduced nitrate uptake. Interestingly,
NRT1.1 has the ability to transport auxin and this transport is
inhibited by nitrate (Krouk et al., 2010). Mounier et al. (2014)
showed that in nitrate patches, nitrate inhibits auxin transport
by NRT1.1 out of lateral root tips and primordia, leading to
auxin accumulation and stimulation of lateral root growth.
Outside these patches, nitrate levels are low and NRT1.1 prevents
accumulation and thus lateral root growth.

NRT1.1 has been shown to affect expression of several
downstream genes involved in nitrate starvation responses,
including NRT2.1 (Muños et al., 2004). NRT2.1 is a major
component of high-affinity nitrate uptake in the root (Wirth
et al., 2007). NRT1.1 and NRT2.1 seem to be responsible for
repression of lateral root growth outside nitrate patches, based
on their mutant phenotypes (Little et al., 2005; Remans et al.,
2006b; Krouk et al., 2010). Nitrate starvation can trigger ethylene
production, a phytohormone that influences root growth (Tian
et al., 2009). NRT2.1, also induced by nitrate starvation, seems to
stimulate ethylene production (Zheng et al., 2013). Conversely,
ethylene inhibits NRT1.1 and NRT2.1 expression, possibly
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providing a negative feedback loop important for fine tuning
responses (Leblanc et al., 2008; Tian et al., 2009).

DROUGHT: SEARCHING FOR WATER
SUPPLIES

Besides nutrient limitation, water limitation is the biggest driver
of the yield gap. Mueller et al. (2012) have shown that in
16% of the areas with a current yield gap bigger then 25%,
improving irrigation can solely close the gap. In addition, for all
investigated areas improving irrigation would decrease the gap.
This illustrates the importance of water availability for plants.
Plants need water for transport, structure and photosynthesis
among other processes. Most crops have high water requirements
and are poorly drought resistant. However, irrigation is already
responsible for 70% of the total use of available freshwater (FAO
and ITPS, 2015). The present focus of plant breeders therefore is
on improving water use efficiency of crops.

When water availability is limited, the soil osmotic potential
decreases and plants are confronted with osmotic stress. Plants
cannot take up water and sometimes even loose water to the
soil. The high surrounding osmotic potential leads to loss of
turgor, starting in the root. The combination of rapid sensing
and signaling, followed by adjustments on both cellular and organ
level, can enable the plant to limit water loss and survive drought
stress (as reviewed in Robbins and Dinneny, 2015). Drought
stress leads to distinct changes in RSA, both on whole-root system
and sub-organ level.

Whole-Root Level: Deeper Rooting for
Water
Water is generally stored in deeper soil layers, because the topsoil
dries more quickly. Plants that develop deeper root systems will
have access to water stored in these deeper layers. Among other
traits, deeper rooting has been shown to be beneficial for plant
production and survival under water limiting conditions (as
reviewed in Comas et al., 2013). For example, the generally deeper
rooting mutant extremely drought tolerant1 (edt1) in Arabidopsis
shows high drought tolerance (Yu et al., 2008). This is explained
by the ectopic overexpression of the HD-ZIP transcription factor
HDG11, which directly promotes the transcription of genes
encoding cell wall loosening proteins. These proteins promote
cell elongation in the root, leading to an extended root system (Xu
et al., 2014). Interestingly, expression of HDG11 in other species
such as rice, poplar and cotton, also confers drought tolerance
(Yu et al., 2013, 2016).

Reaching deeper soils requires a shift from investment
in lateral roots to investment in axile roots (Figure 3C).
Arabidopsis shows a strong inhibition of lateral root emergence
and elongation when grown on agar medium containing an
osmoticum, such as sorbitol or mannitol, mimicking osmotic
stress (Deak and Malamy, 2005; Xiong et al., 2006). Importantly,
Xiong et al. (2006) showed a possible link between inhibition of
lateral root growth on agar and drought tolerance in soil. Mutants
performing well under drought conditions in soil, showed high
sensitivity to ABA leading to strong inhibition of lateral root

length on agar media. In comparison, less tolerant mutants
showed no inhibition of lateral root length. ABSCISIC ACID
INSENSITIVE4 (ABI4), enhanced by ABA during drought stress,
can inhibit PIN1 expression, leading to decreased polar auxin
transport and decreased lateral root formation (Shkolnik-Inbar
and Bar-Zvi, 2010; Rowe et al., 2016). This mode of action of ABA
provides a possible mechanistic explanation for the effect of ABA
on lateral root formation.

Polar auxin transport by influx and efflux carriers determines
auxin distribution in the root, which is not only important
for LR formation, but also for bending of plant organs by
differentially affecting cell elongation. This bending is essential
for gravitropism of the main root. Positive gravitropism, growing
in the direction of gravity, orientates the root downward and
enables penetration of the soil. However, other root components,
such as lateral, seminal and crown roots can display very different
growth angles, partly suppressing gravitropism. The angle of
these roots strongly determines whether RSA develops shallow
or deep. In lateral roots PINs determine auxin distribution
and thus the GSA (Rosquete et al., 2013). The magnitude
of the difference in auxin concentration between the upper
and lower side of the lateral root determines how strong a
lateral root will bend (Roychoudhry et al., 2013). As previously
described, auxin transport is inhibited during drought stress
due to the inhibition of PIN1 expression (Liu et al., 2015),
which might facilitate increased downward bending of the
roots.

In several crop species increased downward bending of the
roots is correlated with drought tolerance. In rice, a strong
correlation between the angle of roots and drought tolerance is
observed (Kato et al., 2006). High expression of the DEEPER
ROOTING1 (DRO1) gene in rice, responsible for increased
downward bending of the roots by altering the auxin distribution,
results in maintained high yield under drought stress (Uga
et al., 2013). This example indicates that adapting RSA, in this
case both using genetic and transgenic approaches, can result
in increased drought tolerance. Similar to rice, the angle of
seminal roots in wheat cultivars also correlates with drought
tolerance (Manschadi et al., 2008). Drought tolerant wheat
cultivars develop seminal roots with a narrow angle, growing
deeper into the soil.

Sub-organ Level: Hydrotropism and
Hydropatterning
Although a strong vertical distribution pattern of water exists,
soil heterogeneity in water content exists and sensing of available
water is crucial for optimal water uptake. It has been shown
that plants are able to partially repress gravitropism and grow
toward water, the so-called hydrotropism response (as reviewed
in Eapen et al., 2005; Takahashi et al., 2009; Cassab et al., 2013).
To investigate hydrotropism in Arabidopsis, different growth
systems have been used, in which either salt solutions or agar
with sorbitol created a gradient in osmotic potential and thus
a gradient in water availability. Arabidopsis was able to redirect
growth of its main root away from a low osmotic potential and
thus low water availability (Takahashi et al., 2002; Kaneyasu et al.,
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2007; Moriwaki et al., 2013). This moisture-driven hydrotropic
response has also been observed in other species including maize
(Takahashi and Scott, 1991), cucumber (Mizuno et al., 2002), and
pea (Takahashi and Suge, 1991; Takahashi et al., 1996).

As described previously, the distribution of auxin, driven
by polar auxin transport, has a central role in regulating
bending of plant organs and response to gravity. Interestingly,
hydrotropism seems to be independent from polar auxin
transport, as the repression of influx and efflux carriers of auxin
do not inhibit the response (Kaneyasu et al., 2007). Recently,
auxin distribution during hydrotropism was measured with the
DII-VENUS SENSOR (Shkolnik et al., 2016). Indeed, during
the first 2 h of hydrotropic response, no change in auxin
distribution was observed. In the presence of NPA, an inhibitor
of auxin transport, hydrotropic bending was not inhibited. The
involvement of auxin through changes in auxin sensitivity or
biosynthesis remains ellusive due to contrasting results showing
either positive, negative or no effects of inhibition of auxin
responses or sensitivity (Takahashi et al., 2002; Kaneyasu et al.,
2007; Shkolnik et al., 2016).

It has been shown that Arabidopsis roots can distinguish a wet
from a dry surface and selectively favor development of roots in
these wet places over development in dry places (Bao et al., 2014).
These wet surfaces determine where new lateral root founder cells
are formed. Deak and Malamy (2005) have shown that under
dry conditions lateral root primordia develop at similar rates
as under control conditions. These primordia can subsequently
be rapidly induced in zones with high water availability. The
combination of formation and emergence of primordia leads to
specific root proliferation at sites of high water availability, so-
called hydropatterning. This process seems to be independent
of the major drought stress hormone, ABA (Bao et al., 2014).
Further research on this new topic is required to provide more
knowledge on how plant roots sense moisture and adjust RSA
accordingly.

SALINITY

Salinity is a major and increasing problem for agriculture
(Rengasamy, 2006). Most crop species are salt sensitive and
grow poorly on salinized soils (Sairam and Tyagi, 2004; Munns
et al., 2006; Munns and Tester, 2008). In 1992, the extent of
salinity-affected soils was estimated at 410 billion ha. Although
an adequate mapping of the current extent of salinized soils is
lacking, over 100 countries are confronted with soil salinization.
On a yearly basis between 0.3 and 1.5 million ha of arable
land are lost to salinization and another 20–40 million ha are
strongly affected by salinity (FAO and ITPS, 2015). Although
some of these are naturally occurring saline soils, current
observed salinization is often the result of irrigation practices.
Irrigation in arid zones, accounting for approximately 40% of
irrigation worldwide, mobilizes salts stored in the deeper soil
layers (Smedema and Shiati, 2002). In addition, due to freshwater
scarcity, an increased use of brackish irrigation increases salt
levels even further. The increasing losses of arable land due to
salinization ask for the development of salt tolerant crops.

Similar to drought, salinity can cause problems due to the
high osmotic potential in the soil, leading to osmotic stress. In
addition, salinity affects plant growth due to the toxicity of high
sodium Na+ levels. Na+ toxicity especially causes problems in
the shoot by inhibiting photosynthesis among other processes
(Munns, 2002). Na+ is chemically similar to K+ and can interfere
with processes in which K+ plays an essential role (Benito et al.,
2014). The capacity to maintain a low Na+/K+ balance in the
shoot has been shown to be closely linked to salt tolerance (Møller
et al., 2009). Preventing Na+ transport to the shoot is thus
very important. The root system is responsible for water uptake,
accompanied by dissolved ions including Na+, and thus plays
an essential role in preventing Na+ from entering the vascular
system and reaching the shoot.

Remodeling of the Root System during
Salt Stress
Salt has a distinct effect on root growth (as reviewed in Galvan-
Ampudia and Testerink, 2011). Although, low salt concentrations
up to 50 mM can promote plant growth in Arabidopsis
(Zolla et al., 2010; Zhao et al., 2011; Julkowska et al., 2014),
higher salt concentrations have severe negative effects. Both
primary and lateral root growth is inhibited during salt stress
(Figure 3D; Julkowska et al., 2014). In addition, lateral root
number specifically decreases in the root zone developed after
exposure to salt stress (Figure 3D; Julkowska et al., 2014). Most
studies show no effect of salt stress on lateral root density,
indicating that the decrease in number of lateral roots is related
to the inhibition of primary root growth (Julkowska et al., 2014).

Within seconds after exposure to salt stress, plant signaling
is activated. This early signaling leads to adjustments in plant
growth (as reviewed in Julkowska and Testerink, 2015), starting
with a quiescence of growth in all plant organs. The quiescence
phase is caused by a temporary inhibition of mitotic activity,
leading to lower cell division rates (West et al., 2004). After the
quiescence phase, growth recovers again. However, growth rates
only recover to a certain extent, because the inhibition of the cell
cycle during the quiescence phase results in fewer cells in the
meristem (West et al., 2004). In addition, mature cell length is
smaller in salt stressed roots.

Quiescence is induced by abscisic acid (ABA), which is
rapidly up-regulated under salt stress due to the decrease in
osmotic potential (Jia et al., 2002; Duan et al., 2013; Geng
et al., 2013). ABA in general inhibits both gibberellin (GA) and
brassinosteroid (BR) signaling (Achard et al., 2006; Gallego-
Bartolome et al., 2012) and stress-induced reduction of growth
has been shown to benefit the plant (Achard et al., 2006). It is thus
proposed that the quiescence phase is essential to induce changes
to cope with salt stress. The quiescence phase is followed by a
partial growth recovery, that is mainly guided by an increase in
GA and BR levels (Geng et al., 2013).

The length of the quiescence phase differs strongly between
root components. Whereas quiescence in the main root takes
approximately 8 h, this phase can take up to 2 days in lateral
roots (Duan et al., 2013; Geng et al., 2013). In a similar way, the
recovery extent of different organs differs. Although overall an
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inhibition of root growth is observed, there is a distinct difference
between the effects of salt on primary in comparison to lateral
root growth. Julkowska et al. (2014) have shown that in Col-0
the relative growth rate of the primary root was more strongly
affected than the growth rate of the lateral roots. This indicates
that the RSA is remodeled during salt stress. The adaptive value
of this remodeling with respect to salinity tolerance is still unclear
and requires further research.

In a screen of 32 Arabidopsis accessions, a first indication
for a relation between remodeling of RSA during salt stress
and salt tolerance was found (Julkowska et al., 2014). The
screen revealed four distinct growth strategies during salt stress,
depending on the relative inhibition of the number of lateral
roots, main root and lateral root growth rates. One of these
strategies was correlated with a much lower Na+/K+ level in the
shoot, indicating less Na+ uptake and thus a higher tolerance.
This strategy is characterized by a strong inhibition of lateral root
growth rates, while main root growth rates and number of lateral
roots are much less affected (Figure 3D).

Besides remodeling of the root system during salt stress,
plants also show reduced gravitropism under saline conditions
(Sun et al., 2007). Galvan-Ampudia et al. (2013) showed that
plants can specifically redirect growth away from higher salt
concentrations, a response called halotropism. This response
was observed in Arabidopsis, tomato and sorghum seedlings,
both on agar media and in soil. Similar to gravitropism, auxin
redistribution is central in regulating halotropism. Endocytosis
of PIN2, an auxin efflux carrier, at the side of high salt
concentrations, redistributes auxin in the root (Galvan-Ampudia
et al., 2013). The redistribution of auxin is supported by auxin-
induced expression of AUX1, an auxin influx carrier (van den
Berg et al., 2016). Both mathematical modeling and experimental
data have shown that these processes, together with a transient
PIN1 increase, are responsible for the root bending away
from salt (Galvan-Ampudia et al., 2013; van den Berg et al.,
2016).

Part of the salinity response is also triggered by osmotic
stress and shows overlap with drought responses. However,
the changes in RSA show distinct differences. For example,
main root growth is strongly promoted during drought,
whereas it is inhibited during salt stress. It is not well-
known whether the above described quiescence phase is
also displayed during drought stress. Because the osmotic
component of salinity is believed to underlie this response,
it is worth investigating. For halotropism and hydrotropism,
although similar responses, the underlying mechanisms seem
to differ. In contrast to halotropism, hydrotropism has shown
to be independent of auxin transport (Kaneyasu et al., 2007).
Halotropism is dependent on auxin distribution and occurs
only in response to Na+ ions, indicating it is a specific
response to high salinity (Galvan-Ampudia et al., 2013; Pierik
and Testerink, 2014). For drought stress, the function of
changes in RSA has been studied extensively, whereas salinity
research has been more focused on the underlying mechanistic
principles. In future research, studying the overlaps and
differences between these stresses can benefit knowledge in both
areas.

Most crop species are highly sensitive to salinity. Tomato
serves as a model crop that is widely used to study how salt
tolerance can be enhanced in crop species. For a wide range of
vegetables, including tomato, grafting is a very effective way to
increase crop resistance to biotic and abiotic stresses, without
affecting above ground characteristics (see also challenge 3 in
section on crop selection). For several salt sensitive commercial
tomato cultivars, grafting onto rootstocks of more tolerant
cultivars has positive effects on productivity when exposed to
high salinity (Estañ et al., 2005; Martinez-Rodriguez et al.,
2008). The Na+/K+ levels in the shoot (scions) indicated that
the tolerant rootstocks prevented Na+ reaching the shoot,
illustrating the importance of the root system for salt tolerance.
Unfortunately, only little is known about RSA development of
crops during salt stress. In rice, rye, and maize inhibition of
root length has been observed under high salinity (Rodriguez
et al., 1997; Rahman et al., 2001; Ogawa et al., 2006). Similar
to Arabidopsis, maize shows a quiescence phase in response
to exposure to high salinity, followed by recovery (Rodriguez
et al., 1997). In rye, the reduction in root growth is related to a
reduction in cell division and an increase in cell death (Ogawa
et al., 2006). Further research on remodeling of the root system
of crop species will be necessary to use our current knowledge in
Arabidopsis to improve crop tolerance to salinity.

FLOODING: ANAEROBIC STRESS

Already 10% of cultivated land surface is so poorly drained that
waterlogging, leading to anoxic conditions in the root zone,
causes crop yield losses. Twenty percent of agricultural land in
Eastern Europe and the Russian Federation and 16% in the USA
are too wet for optimal plant functioning (Setter and Waters,
2003). As climate change is expected to lead to more frequent
heavy precipitation during the plant growth season in some areas,
these problems will increase. Flooding and hypoxia impose an
immediate and dramatic limitation for root functioning. Limiting
the oxygen supply to root cells causes an almost instantaneous
arrest of root growth (as reviewed in Gibbs et al., 1998). Switching
from aerobic respiration to the glycolytic generation of ATP
leads to a severe reduction in energy available for maintenance,
growth and ion uptake. Of these three different functions, growth
takes 20–45% of ATP generated through respiration (Veen, 1981;
van der Werf et al., 1988; Poorter et al., 1991; Scheurwater
et al., 1998, 1999). Balancing the demand for energy with the
reduced production through glycolysis could therefore also cause
limiting root growth. Arrest of root growth could, however, also
be caused by accumulation of products of anaerobic metabolism.
A lethal drop in pH of the cytoplasm can occur when protons
accumulate in the cytoplasm and the vacuole (Gerendás and
Ratcliffe, 2002). In Phragmites australis addition of low molecular
weight monocarboxylic acids, such as acetic acid, propionic
acid, butyric acid and caproic acid, and sulfide, at concentration
levels that have been measured in situ, arrested root elongation
(Armstrong and Armstrong, 2001). As the rate of root elongation
is one of the most important parameters determining nutrient
uptake rate (Silberbush and Barber, 1983; Dunbabin, 2006),
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flooding-induced inhibition of root growth ultimately would lead
to nutrient limitation and negatively impact the survival of the
whole plant.

One of the best-studied adaptations of plants to flooding
conditions is the formation of aerenchymatic tissue in the root,
which provides an alternative pathway for the supply of oxygen
to the root tissue (Jackson and Armstrong, 1999; Gibberd et al.,
2001; Rubinigg et al., 2002). This requires that new, well-adapted,
adventitious roots are being formed (Visser et al., 1996). In these
roots, axial oxygen loss can be kept to a minimum so that the
root tip becomes a well-oxygenated micro-climate (Jackson and
Armstrong, 1999). Most of the disadvantages for root metabolism
imposed by the flooding-induced hypoxic conditions are thereby
ameliorated. In monocot plants the formation of new nodal roots,
replacing the old seminal roots and often containing aerenchyma,
can be stimulated, leading to superficial rooting patterns (Rich
and Watt, 2013). If plants are not capable of increasing their
oxygen supply through aerenchymous conducts in the root or by
placing new roots close to the soil surface where the oxygen level
might be higher, survival of flooding is unlikely.

TEMPERATURE

Temperature is a key abiotic factor involved in seed germination
and subsequent root system development during early seedling
establishment. The temperature of the soil fluctuates by
sinusoidal oscillations on a diurnal scale. However, depending
on soil depth, changes in soil temperature are delayed and
much lower in amplitude than variations in the atmospheric
temperature (Walter et al., 2009). The root-zone temperature
(RZT) thus fluctuates daily, seasonally, and with soil depth
(Füllner et al., 2012). Depending on the season and the time of the
day, the temperature of the root environment can be significantly
different than the atmospheric temperature experienced by the
shoots. The RZT directly affects root development, uptake and
upward transport of water and nutrients (Aroca et al., 2001),
phytohormone production (Ali et al., 1996; Veselova et al., 2005),
which in turn affect water status (Bloom et al., 2004), stomatal
conductance (Dodd et al., 2000), photosynthesis (Hurewitz and
Janes, 1983), biomass partitioning (Delucia et al., 1992; Engels,
1994), leaf (Poiré et al., 2010), and shoot growth (Venema
et al., 2008; Sakamoto and Suzuki, 2015). Plant species clearly
differ in their optimal temperature range for root development;
e.g., oat 4–7◦C (Nielsen et al., 1960), wheat 14–18◦C (Porter
and Gawith, 1999), pea 15–20◦C (Gladish and Rost, 1993),
tomato 22–25◦C (Gosselin and Trudel, 1984), sunflower 25–
30◦C (Seiler, 1998), and cotton 32–35◦C (Mcmichael et al., 1993).
Root:shoot ratios usually increase under unfavorable RZTs as
long as temperature limits for root development are not reached
(Engels, 1994; Venema et al., 2008; Füllner et al., 2012). This
adaptation in root:shoot ratio may overcome restrictions in water
and nutrient uptake due to increased water viscosity and/or
decreased root hydraulic conductance (Equiza et al., 2001; Aroca
et al., 2012). Global climate change is likely to exacerbate plant
abiotic stress in coming decades by increasing fluctuations in soil
temperature and (related) water availability (Lynch and Brown,

2012). Breeding crops with a broader root-zone temperature
optimum is therefore of significant importance to improve future
plant performance. Improved knowledge of the key regulators for
RSA optimization would support these breeding efforts.

Temperature Effects on RSA
The exposure of both mono- and dicot plant roots to
temperatures below or above their optimum temperature
generally decreases (i) primary root length, (ii) lateral root
density (numbers of lateral roots per unit primary root length)
and (iii) the angle under which lateral roots emerge from the
primary root, whereas the average lateral root length is unaffected
(Mcmichael et al., 1993; Seiler, 1998; Nagel et al., 2009).
In addition, roots suffering from supraoptimal temperature
stress start to initiate second and third order laterals (Pardales
et al., 1999) and are characterized by an increased average
root diameter (Qin et al., 2007). In general, the modulating
effect of sub- and supraoptimal RZTs on RSA development
reduces the volume that roots may access for the uptake
of water and nutrients. However, root temperature was kept
spatially uniform in all these studies. Remarkably, monocot
barley plants exposed to a vertical RZT gradient of 20–10◦C
showed increased shoot and root dry masses of 144 and
297%, respectively, and a 161% increase in root:shoot ratio
compared with plants grown at a uniform RZT of 20◦C (Füllner
et al., 2012). Barley exposed to the vertical RZT revealed
also accelerated tiller formation. The higher root biomass of
plants grown at the vertical RZT gradient was not the result
of longer roots but was associated with a higher proportion
of thicker roots. Additionally, root systems developed under a
vertical RZT gradient were much stronger concentrated in the
upper 10 cm of the soil substrate gradient and their N and
C concentrations were significantly lower than under uniform
RZT conditions. These data clearly demonstrate that knowledge
gained from experiments with uniform RZTs cannot simply
be extrapolated to the field where roots experience vertical
temperature gradients.

The temperature dependence of RSA development shows
strong inter- (Mcmichael et al., 1993; Lee et al., 2009) and
intraspecific variation (Seiler, 1998; Hund et al., 2007, 2008).
The temperature plasticity of the RSA is most extensively
studied in maize. In this monocot species, the total lateral root
length correlated significantly with improved photosynthesis-
related traits and dry matter accumulation at suboptimal growth
temperature (Hund et al., 2007). A high density of long lateral
roots was therefore regarded as a promising trait to improve
early seedling vigor at suboptimal soil temperatures (Hund
et al., 2008). Nevertheless, breeding has to focus on optimizing
RSA over a broad range of RZTs as roots also experience
temperatures in the optimal- or even supraoptimal range during
the entire growth season. At high (root-zone) temperatures the
development of long axile roots is of greater importance than
lateral roots to facilitate appropriate water uptake from the
lower soil layers in times of drought stress (Hund et al., 2008).
A schematic overview of general observed effects of non-optimal
temperatures on RSA and its adaptations to broaden the RZT
range for optimal plant performance are presented in Figure 4.
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FIGURE 4 | Schematic overview of the effect of root-zone temperature
on plant performance and underlying general changes in RSA (brown).
To broaden the temperature range for optimal plant performance (yellow),
plants should invest in lateral root formation (suboptimal temperature range)
and/or axile root length (supraoptimal temperature range). The adaptive value
of these RSA changes are, respectively, an increased root surface area to
improve resource uptake capacity and drought adaptation by penetration to
lower soil layers.

To optimize RSA over a broader temperature range, Hund
et al. (2012) provided the prove-of-concept that hybrids of
southern dent and northern flint maize inbred lines, which
contrast in temperature dependence of axile and lateral root
elongation rates, showed improved rooting potential across the
sum of all temperatures. Application of this heterosis effect can
lead to hybrids that can perform well in a broader range of
temperature conditions, thereby improving the robustness of
whole-plant performance.

Temperature Modulation of Root
Elongation
The primary stunting effect of sub- and supraoptimal
temperatures on RSA is caused by inhibition of root elongation
(Pahlavanian and Silk, 1988; Pritchard et al., 1990; Pardales et al.,
1992; Gladish and Rost, 1993; Nagel et al., 2009). In Arabidopsis
accessions, the relative decrease in root elongation rates after
transfer from 21 to 10◦C were not significantly correlated with
the average temperature during the growing season of the specific
ecotype, suggesting that primary root growth at 10◦C is not a key
factor in adaptation to colder habitats (Lee et al., 2009). Within

tomato, however, the relative inhibition of root elongation and
root growth rates at low temperatures were indicative for the
difference in chilling tolerance between domestic cultivars and
high-altitude accessions of the wild tomato Solanum habrochaites
(Zamir and Gadish, 1987; Venema et al., 2008). Dynamic
changes in temperature severely affect the elongation rate of
root cells rather than the length of the elongation zone (Nagel
et al., 2009). In the short-term (hours), inhibition in root cell
elongation by low temperature is related to a decrease in the
in vivo extensibility of the cell wall (Pritchard et al., 1990).
Gravitropism experiments with Arabidopsis roots demonstrated
that acute cold stress (4◦C) selectively inhibits the basipetal auxin
transport due to blocking the intracellular trafficking of a subset
of proteins that include auxin efflux carriers (PIN2 and PIN3).
As a consequence, auxin accumulates to a level at which root
cell elongation is inhibited (Shibasaki et al., 2009). When plant
roots have enough time to acclimate to a constant low RZT
(weeks), cell elongation rates increase again and the length of
the elongation zone expands (Pahlavanian and Silk, 1988). This
may explain the strong linear relationship between temperature
and elongation rates of both primary and later roots directly
after germination and its disappearance later on during seedling
establishment (Aguirrezabal and Tardieu, 1996).

Variation in root elongation rates among Arabidopsis
accessions correlated at optimal temperature with the production
rate of cells within the root meristem (Beemster et al., 2002). Cell
production, in turn, was determined by variation in cell cycle
duration and, to a lesser extent, by differences in the number
of dividing cells. Cell production rates strongly correlated
with the activity of the cyclin-dependent kinase (CDKA).
Low temperature decreased the division potential of the root
meristem in Arabidopsis by reducing both the meristem size and
cell number (Zhu et al., 2015). The repression of the division
potential of root meristematic cells at a suboptimal temperature
of 16◦C could be ascribed to a reduced accumulation of auxin
in the root apex. Long-term (7 days) exposure to 16◦C inhibited
the expression of PIN1/3/7 and auxin biosynthesis-related
genes suggesting that auxin transport and biosynthesis both
contribute to the low-temperature mediated reduction of
auxin accumulation in roots tips. Root length and meristem
cell number of ARABIDOPSIS RESPONSE REGULATOR 1
(arr1-3) and 12 (arr12-1) cytokinin signaling mutants were
much less susceptible to low temperature than wild-type roots.
This difference was related to higher PIN1/3 expression in the
mutants, which in turn resulted in a less pronounced reduction
in auxin accumulation. These data, together with the results
obtained with the cytokinin signaling mutant ahp1-1 ahp2-1
ahp3, strongly suggest the involvement of cytokinin signaling in
the modulation of RSA development at low temperature (Zhu
et al., 2015).

High RZT (40◦C) reduced the elongation and cell production
rate of Sorghum seminal roots with 14 and 26%, respectively,
for every 2 days of exposure (Pardales et al., 1992). In
contrast to low temperatures, the underlying inhibitory effects
of high temperatures and heat stress on root elongation are
poorly studied. The limited information that is available in the
literature excludes the involvement of altered IAA transport
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or levels (Gladish et al., 2000), but supports the involvement
of increased ethylene levels (Qin et al., 2007). Inhibitors of
ethylene biosynthesis partly alleviated the effect of high RZT
on root elongation, stomatal conductance and shoot water
status, however, they failed in ameliorating the negative effects
on photosynthesis and biomass accumulation. This points to
a non-stomatal limitation of photosynthesis mediated by high
temperature-induced changes in nutrient uptake (Qin et al.,
2007).

CROP SELECTION ON RSA: THE
CHALLENGES

This review presents a number of examples in which plasticity
of RSA traits considerably impact a plant’s capability to cope
with one or more abiotic stresses. These examples emphasize
the great potential that selection on RSA traits holds for crop
improvement. However, the aboveground focus of crop selection
is not without reason. In this concluding section we will discuss
three major challenges breeders face when applying selection for
RSA in their crop improvement programs and possible ways to
tackle these.

Challenge 1: High Throughput
Belowground Screening
The most prominent challenge for crop selection on RSA is
uncovering the hidden world of plant roots. Whether crops are
grown in fields or in greenhouses, roots are usually grown in a
substrate, which prevents easily screening their properties. The
growth substrate also greatly affects how roots develop. The
currently most common method to investigate RSA, growth on
agar medium, is very artificial. Most often roots grow in light,
with an excess of sucrose, in 2D and the humidity inside the Petri
dish is almost saturated. Effort is taken to improve this system,
for example by shielding the roots from light (Silva-Navas et al.,
2015). Although agar media provide an easy, adequate and cheap
method that can be used for research on Arabidopsis in the lab, its
use in crop selection is not straightforward.

In the last decade a wide range of new and improved methods
to research roots in a more natural environment have been
developed (as reviewed in Zhu et al., 2011; Downie et al., 2015;
Judd et al., 2015; Kuijken et al., 2015). Most systems are based
on either a transparent growth medium or a medium from which
the roots can easily be removed without damage. Agar and other
gel-like mediums are suited for imaging during growth, although
the resistance of the medium influences root growth and the
humidity in these substances is very high. A good alternative
is hydroponics, in which the root is growing inside a nutrient
solution (Tocquin et al., 2003; Chen et al., 2011; Le Marié
et al., 2014; Mathieu et al., 2015). Hydroponics is also used in
greenhouse culture, making it highly relevant for crop selection.
This system also eases harvesting roots for different purposes
and measuring exudates of roots. However, roots develop very
differently, because resistance is lacking and humidity and
nutrients are dispersed homogeneously. In addition, a good
supply of oxygen is essential to prevent oxidative stress. A third

alternative which is also very promising for automated imaging
is aeroponics (Zobel et al., 1976; Ritter et al., 2001). In this
system roots are grown in water-saturated air created by for
example spraying with water and nutrients. This system lacks
any material to grow in, which eases imaging. However, without
much resistance, roots grow very vast and can have problems
extending their root system to the sides against gravity. Last,
root systems can be grown inside soil, which is of course most
realistic for field crops and many greenhouse crops. However,
non-destructive imaging inside soil asks for imaging methods
that reach further than a simple camera. Several groups have
recently reported the use of X-ray and MRI scans to image
roots inside the soil (Mooney et al., 2012; Mairhofer et al.,
2013; Metzner et al., 2015; Wang et al., 2015). Although these
methods are more expensive, they offer great opportunities for
automated imaging. An alternative method is GLO-Roots, based
on luminescence genes expressed inside roots (Rellán-Álvarez
et al., 2015). This system visualizes the root system through a
thin layer of soil. For fundamental research labs, this is more
feasible and also offers the opportunities to image the expression
of certain genes in the root system. For root breeding, this is less
interesting, because the plants are genetically modified and grown
in 2D systems.

As more methods come available to study the root system
and also methods are developed suitable for high-throughput
screening of root systems, the need for good root image analysis
software is growing. A wide range of root image analysis software
exists (as reviewed in Lobet et al., 2013; Spalding and Miller,
2013; Kuijken et al., 2015). These tools range from automated
to non-automated. For a limited amount of data, non-automated
software prevents mistakes and gives the user a lot of freedom.
However, the analysis is very time consuming and is therefore
not suited for large datasets. Automated software can analyze
a large dataset rapidly, but especially in complex root systems
the analysis is limited to global data such as rooting depth and
width. In semi-automated software, such as SmartRoot (Lobet
et al., 2011) and EZ-rhizo (Armengaud et al., 2009), the level of
user interactions is greater to ensure a lesser degree of analysis
errors. Again, this will be more time consuming for larger root
systems. In addition, when observing very large root systems, it
is even hard to separate roots by eye. Therefore, the development
of improved methods of root image analysis has high priority for
the field.

Above described methods are all suited for 2D images of
root systems. When simplifying root growth to a 2D system,
spatial orientation of roots gets lost. Therefore, new methods
such as growing roots in gel cylinders (Iyer-Pascuzzi et al., 2010)
and using X-ray to image through soil will offer sophisticated
opportunities to grow and image roots in 3D (as reviewed
in Piñeros et al., 2016). Although only limited options for
reconstructing and analyzing 3D images are currently available,
it might eventually be easier to analyze 3D than 2D images,
because overlapping and clumping together of roots will be
much less common. Developing a good automated imaging
analysis set-up of root systems can offer great advancements in
crop selection and would be an entirely feasible investment for
breeding companies.
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Challenge 2: Dealing with the Complexity
of Interacting Stresses
Although the complexity of the combination of different biotic
and abiotic stresses is not restricted to the root system, it does
make selecting on RSA more challenging. The described RSA
responses are mostly known for single stresses and some of the
responses are very contrasting. A good example for this is that in
drought-tolerant cultivars with a deep-rooting water-conserving
phenotype, less root mass is available to forage for phosphorous
at shallow depths (Lynch and Wojciechowski, 2015). Certain
stresses tend to occur together often and therefore it might
be useful to further investigate the specific RSA response to
these conditions. A good example is salt stress and phosphate
starvation, as phosphate ions tend to precipitate in saline soils
and become unavailable to plants (Naidu and Rengasamy, 1993;
Grattan and Grieve, 1998). Both stresses have contrasting effects
on several RSA traits and the inhibiting effect of salt on
lateral root development might even further limit phosphate
uptake. Crucial in crop breeding aimed to optimize RSA is the
availability of variation and plasticity in RSA, as observed among
Arabidopsis accessions (Mouchel et al., 2004; Rosas et al., 2013;
Ristova and Busch, 2014), related tomato species (Ron et al.,
2013) and wheat varieties (Pound et al., 2013). Recently, Kawa
et al. (2016) studied the natural variation in the response of
330 Arabidopsis accessions to the combination of salinity and
phosphate starvation. In general, responses to salt stress were
favored and especially lateral root growth was strongly inhibited.
However, not all accessions showed the same response and this
natural variation was associated with 13 genetic candidate loci for
integrating the plants’ response to combined stress (Kawa et al.,
2016). For many crops, however, the natural variation in RSA
is currently still underexploited. Moreover, we need to advance
our understanding of the adaptive value of genetically determined
differences in RSA on the level of crop performance, marketable
yield and fruit quality in targeted root environments and growth
conditions.

Because the complexity of experiments and screenings
increases with every additional variable, modeling can provide
very useful tools to support research and breeding. A wide range
of plant models on different scales is available to the community.
These models should now be integrated with a multiscale
modeling approach (Band et al., 2012; Rellán-Álvarez et al., 2016)
in which developmental processes, RSA, outside environmental
factors and plant performance are connected. Current models,
however, are often not easy to integrate. When developing
a model, the general challenge is to make it comprehensive,
widely applicable and simple. For models describing RSA, most
are falling short in one of these requirements. Some are only
applicable for a certain species or stage of life, which limits
the use for crop systems. As soon as models tend to be more
widely applicable or incorporate more conditions, they tend to
become more complex and the number of parameters increases.
This decreases the ease of interpretation and especially the ease
of integration into a larger model (including soil and plant
performance models). The last few years, a range of more simple
models have been published. These models are often based on

a few simple rules. For example, ArchiSimple bases root system
development on the fact that the growth rate of a root depends
on the thickness of the root (Pagès and Picon-Cochard, 2014;
Pagés et al., 2014). By using a simple and widely applicable model,
it will be possible to implement models of soil behavior and of
plant productivity. Some of the root models have already been
integrated with models for changes in the soil (as reviewed in
Pedersen et al., 2010; Dunbabin et al., 2013; Van der Putten
et al., 2013) and show to be very promising in predicting the
responses of the root system. One example is the ROOTMAP
model, which integrates soil-water-nutrient dynamics with root
growth responses in a three dimensional system (Dunbabin et al.,
2002). Simulations are based on a simple external supply/internal
demand principle. The model has shown its use in simulating the
efficiency of different RSA types in both heterogeneous phosphate
and nitrate supplies (Dunbabin et al., 2004; Chen et al., 2008).
A good example of how such a model can provide valuable
information is given by Chen et al. (2008), who show how the
model can guide the efficient placement of phosphorus fertilizer.
In a similar way, this kind of model could guide in selecting a
preferred RSA and potentially even predicting possibly involved
processes.

A model that integrates soil behavior, RSA and plant
performance will offer a lot of information to breeders. To
confirm whether a root system is advantageous under certain
stresses as predicted by the model, RILS with contrasting root
systems could be exploited (as illustrated in Liao et al., 2004;
Zhu and Lynch, 2004; Zhu et al., 2005a). If indeed the predicted
root system is advantageous, breeders could screen for this type
of root system in a high throughput phenotyping system as
described in the previous section. This screen can then be used
for determining genes that are associated with this trait and
can be used as targets for further selection. The model could
also predict whether changing certain root system characteristics
would negatively influence productivity. Of course, developing
such a model is a major challenge still, but investments in
developing a good model will be able to speed up crop selection
and could model complex combinations of stresses.

Challenge 3: Improving RSA without
Compromising Yields
Crop selection on aboveground traits has lead to high-yielding
cultivars and crop selection for a certain RSA may come with
costs. The root:shoot ratio is known to increase during almost
every abiotic stress that has been discussed in this review. On
the other hand, selection on RSA does not equal selection for a
bigger root system. Our examples show shifts between different
root organs, rather than shifts in biomass partitioning between
the shoot and the root. In this way, deeper rooting in rice, caused
by expression of HDG11, confers drought tolerance without any
yield penalty (Yu et al., 2013, 2016). However, unwanted side
effects of selection are not uncommon. An excellent tool to
address this problem is to make use of grafting.

Grafting is the process in which the root system (rootstock)
of one plant is connected to the shoot (scion) of another (as
reviewed in Warschefsky et al., 2016). This process naturally
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occurs in some tree species (Mudge et al., 2009) and this
phenomenon may have triggered the development of grafting
in Asia where it is now used in agriculture for over 2000 years
to improve plant production (Kubota et al., 2008). In woody
perennial crops (Albacete et al., 2015; Warschefsky et al., 2016) as
well as in annual vegetable crops (Schwarz et al., 2010; Albacete
et al., 2015), the selection and breeding of suitable rootstocks
offers a powerful tool to sustain and expand the cultivation
under suboptimal growth conditions (Gregory et al., 2013).
Grafting has the advantage that not every cultivar needs RSA
optimization separately, allowing improvement of rooting and
(a)biotic stress tolerance of already existing elite cultivars. As
such, grafting is considered as a surgical and fast alternative
to breeding. Designing rootstocks for specific environments is
becoming a feasible target to face future cultivation problems all
around the world associated with global climate change (drought,
salinization, occurrence of temperature extremes; Gregory et al.,
2013). Important in this respect is to gain more knowledge of
(i) the natural variation in RSA that exists within crops, and (ii)
by what communication mechanisms the root(stock) modulates
the shoot (scion) phenotype and performance, and visa versa
(Warschefsky et al., 2016). In this way, grafting can rapidly
advance our understanding of the adaptive value of differences
in RSA on the level of shoot performance, marketable yield and
fruit quality under targeted growth conditions.

THE VALUE OF MODEL SPECIES

A key aspect for engineering better performing crops via
RSA optimization is improved understanding of the regulatory
processes and underlying genetic components that regulate root
growth. Root growth regulation, and its response to changing
environmental conditions, is a highly complicated process that
is controlled at many different levels by complex actions of
gene networks in both time and space. Advances in this area
are merely derived from work in Arabidopsis (as reviewed in
Wachsman et al., 2015; Slovak et al., 2016). It is expected
that due to the increasing number of highly efficient root

phenotyping platforms, the use of GWAS for root traits, the
increasing available functional genomics resources for roots, and
the development of smart root model systems, much progress
in our understanding of control mechanisms involved in root
development will be achieved over the next 5–10 years.

Although Arabidopsis is often studied under artificial
conditions, it is these conditions that make it possible to
investigate the partly discussed mechanistic and cellular base
behind the observed RSA responses. For crop species only
limited information on these processes is available. Interestingly,
most plasticity in RSA responses overlaps between our model
species and crops, even independent of differences between
monocots and dicots. Sparsely investigated functionality of
RSA in Arabidopsis supports the results found in crops and
conversely sparsely investigated molecular insights in crops
confirmed results already established in Arabidopsis. Of course,
not all mechanisms, responses and genes can be transferred from
Arabidopsis to crops, but taken together the reviewed research,
Arabidopsis proves to provide very valuable information for the
development of crops able to withstand a wide range of abiotic
stresses. This review stresses the importance of incorporating
RSA into current crop selection, but we should not forget the
wonderful tools we already have. Incorporating RSA into current
crop selection also means incorporating Arabidopsis research
into the current breeding pipeline, possibly even more then for
aboveground traits.
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