116 research outputs found

    Six state molecular revolver mounted on a rigid platform

    Get PDF
    The rotation of entire molecules or large moieties happens at 100 ps time scales and the transition process itself is experimentally inaccessible to scanning probe techniques. However

    An electrically actuated molecular toggle switch

    Get PDF
    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy

    Watt-class CMOS-compatible power amplifier

    Full text link
    Power amplifier is becoming a critical component for integrated photonics as the integrated devices try to carve out a niche in the world of real-world applications of photonics. That is because the signal generated from an integrated device severely lacks in power which is due mainly to the small size which, although gives size and weight advantage, limits the energy storage capacity of an integrated device due to the small volume, causing it to rely on its bench-top counterpart for signal amplification downstream. Therefore, an integrated high-power signal booster can play a major role by replacing these large solid-state and fiber-based benchtop systems. For decades, large mode area (LMA) technology has played a disruptive role by increasing the signal power and energy by orders of magnitude in the fiber-based lasers and amplifiers. Thanks to the capability of LMA fiber to support significantly larger optical modes the energy storage and handling capability has significantly increased. Such an LMA device on an integrated platform can play an important role for high power applications. In this work, we demonstrate LMA waveguide based CMOS compatible watt-class power amplifier with an on-chip output power reaching ~ 1W within a footprint of ~4mm2.The power achieved is comparable and even surpasses many fiber-based amplifiers. We believe this work opens up opportunities for integrated photonics to find real world application on-par with its benchtop counterpart

    Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study.

    Get PDF
    BACKGROUND: Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics. METHODS: 10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [Δs], peak positive SR [SRs]), LA conduit function (passive strain [Δe], peak early negative SR [SRe]) and LA booster pump function (active strain [Δa], late peak negative SR [SRa]). RESULTS: In all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (Δs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p \u3c 0.01; SRs [s⁻Âč]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p \u3c 0.05) and impaired LA conduit function as compared to healthy controls (Δe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p \u3c 0.001; SRe [s]⁻Âč: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p \u3c 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (Δa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p \u3c 0.01; SRa [s⁻Âč]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p \u3c 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses. CONCLUSIONS: CMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states

    Phenotyping patients with ischaemic heart disease at risk of developing heart failure: an analysis of the HOMAGE trial

    Get PDF
    Aims: We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and without coronary artery disease (CAD) or prior myocardial infarction (MI). Methods and results: HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over 9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis, patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants, 28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen activator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tumour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months. Conclusions: In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflammatory, immunological, and collagen catabolic processes

    Spironolactone effect on the blood pressure of patients at risk of developing heart failure: an analysis from the HOMAGE trial.

    Get PDF
    AIMS: Uncontrolled blood pressure (BP) increases the risk of developing heart failure (HF). The effect of spironolactone on BP of patients at risk of developing HF is yet to be determined. To evaluate the effect of spironolactone on the BP of patients at risk for HF and whether renin can predict spironolactone's effect. METHODS AND RESULTS: HOMAGE (Heart OMics in Aging) was a prospective multicentre randomized open-label blinded endpoint (PROBE) trial including 527 patients at risk for developing HF randomly assigned to either spironolactone (25-50 mg/day) or usual care alone for a maximum of 9 months. Sitting BP was assessed at baseline, Months 1 and 9 (or last visit). Analysis of covariance (ANCOVA), mixed effects models, and structural modelling equations was used. The median (percentile25-75) age was 73 (69-79) years, 26% were female, and >75% had history of hypertension. Overall, the baseline BP was 142/78 mmHg. Patients with higher BP were older, more likely to have diabetes and less likely to have coronary artery disease, had greater left ventricular mass (LVM), and left atrial volume (LAV). Compared with usual care, by last visit, spironolactone changed SBP by -10.3 (-13.0 to -7.5) mmHg and DBP by -3.2 (-4.8 to -1.7) mmHg (P < 0.001 for both). A higher proportion of patients on spironolactone had controlled BP <130/80 mmHg (36 vs. 26%; P = 0.014). Lower baseline renin levels predicted a greater response to spironolactone (interactionP = 0.041). CONCLUSION: Spironolactone had a clinically important BP-lowering effect. Spironolactone should be considered for lowering blood pressure in patients who are at risk of developing HF

    Proteomic and Mechanistic Analysis of Spironolactone in Patients at Risk for HF.

    Get PDF
    OBJECTIVES: This study sought to further understand the mechanisms underlying effect of spironolactone and assessed its impact on multiple plasma protein biomarkers and their respective underlying biologic pathways. BACKGROUND: In addition to their beneficial effects in established heart failure (HF), mineralocorticoid receptor antagonists may act upstream on mechanisms, preventing incident HF. In people at risk for developing HF, the HOMAGE (Heart OMics in AGEing) trial showed that spironolactone treatment could provide antifibrotic and antiremodeling effects, potentially slowing the progression to HF. METHODS: Baseline, 1-month, and 9-month (or last visit) plasma samples of HOMAGE participants were measured for protein biomarkers (n = 276) by using Olink Proseek-Multiplex cardiovascular and inflammation panels (Olink, Uppsala, Sweden). The effect of spironolactone on biomarkers was assessed by analysis of covariance and explored by knowledge-based network analysis. RESULTS: A total of 527 participants were enrolled; 265 were randomized to spironolactone (25 to 50 mg/day) and 262 to standard care ("control"). The median (interquartile range) age was 73 years (69 to 79 years), and 26% were female. Spironolactone reduced biomarkers of collagen metabolism (e.g., COL1A1, MMP-2); brain natriuretic peptide; and biomarkers related to metabolic processes (e.g., PAPPA), inflammation, and thrombosis (e.g., IL17A, VEGF, and urokinase). Spironolactone increased biomarkers that reflect the blockade of the mineralocorticoid receptor (e.g., renin) and increased the levels of adipokines involved in the anti-inflammatory response (e.g., RARRES2) and biomarkers of hemostasis maintenance (e.g., tPA, UPAR), myelosuppressive activity (e.g., CCL16), insulin suppression (e.g., RETN), and inflammatory regulation (e.g., IL-12B). CONCLUSIONS: Proteomic analyses suggest that spironolactone exerts pleiotropic effects including reduction in fibrosis, inflammation, thrombosis, congestion, and vascular function improvement, all of which may mediate cardiovascular protective effects, potentially slowing progression toward heart failure. (HOMAGE [Bioprofiling Response to Mineralocorticoid Receptor Antagonists for the Prevention of Heart Failure]; NCT02556450)

    The effect of spironolactone on cardiovascular function and markers of fibrosis in people at increased risk of developing heart failure: the heart 'OMics' in AGEing (HOMAGE) randomized clinical trial.

    Get PDF
    AIMS: To investigate the effects of spironolactone on fibrosis and cardiac function in people at increased risk of developing heart failure. METHODS AND RESULTS: Randomized, open-label, blinded-endpoint trial comparing spironolactone (50 mg/day) or control for up to 9 months in people with, or at high risk of, coronary disease and raised plasma B-type natriuretic peptides. The primary endpoint was the interaction between baseline serum galectin-3 and changes in serum procollagen type-III N-terminal pro-peptide (PIIINP) in participants assigned to spironolactone or control. Procollagen type-I C-terminal pro-peptide (PICP) and collagen type-1 C-terminal telopeptide (CITP), reflecting synthesis and degradation of type-I collagen, were also measured. In 527 participants (median age 73 years, 26% women), changes in PIIINP were similar for spironolactone and control [mean difference (mdiff): -0.15; 95% confidence interval (CI) -0.44 to 0.15 Όg/L; P = 0.32] but those receiving spironolactone had greater reductions in PICP (mdiff: -8.1; 95% CI -11.9 to -4.3 Όg/L; P < 0.0001) and PICP/CITP ratio (mdiff: -2.9; 95% CI -4.3 to -1.5; <0.0001). No interactions with serum galectin were observed. Systolic blood pressure (mdiff: -10; 95% CI -13 to -7 mmHg; P < 0.0001), left atrial volume (mdiff: -1; 95% CI -2 to 0 mL/m2; P = 0.010), and NT-proBNP (mdiff: -57; 95% CI -81 to -33 ng/L; P < 0.0001) were reduced in those assigned spironolactone. CONCLUSIONS: Galectin-3 did not identify greater reductions in serum concentrations of collagen biomarkers in response to spironolactone. However, spironolactone may influence type-I collagen metabolism. Whether spironolactone can delay or prevent progression to symptomatic heart failure should be investigated
    • 

    corecore