28 research outputs found

    Ambient Air Pollution and Pregnancy Outcomes: A Review of the Literature

    Get PDF
    Over the last decade or so, a large number of studies have investigated the possible adverse effects of ambient air pollution on birth outcomes. We reviewed these studies, which were identified by a systematic search of the main scientific databases. Virtually all reviewed studies were population based, with information on exposure to air pollution derived from routine monitoring sources. Overall, there is evidence implicating air pollution in adverse effects on different birth outcomes, but the strength of the evidence differs between outcomes. The evidence is sufficient to infer a causal relationship between particulate air pollution and respiratory deaths in the postneonatal period. For air pollution and birth weight the evidence suggests causality, but further studies are needed to confirm an effect and its size and to clarify the most vulnerable period of pregnancy and the role of different pollutants. For preterm births and intrauterine growth retardation (IUGR) the evidence as yet is insufficient to infer causality, but the available evidence justifies further studies. Molecular epidemiologic studies suggest possible biologic mechanisms for the effect on birth weight, premature birth, and IUGR and support the view that the relation between pollution and these birth outcomes is genuine. For birth defects, the evidence base so far is insufficient to draw conclusions. In terms of exposure to specific pollutants, particulates seem the most important for infant deaths, and the effect on IUGR seems linked to polycyclic aromatic hydrocarbons, but the existing evidence does not allow precise identification of the different pollutants or the timing of exposure that can result in adverse pregnancy outcomes

    Unfavourable birth outcomes of the Roma women in the Czech Republic and the potential explanations: a population-based study

    Get PDF
    BACKGROUND: Data on the health status of the Roma people in Central and Eastern Europe are sparse and the reasons for their poor health are not clear. The objective of this study was to quantify the differences in birth outcomes between Roma and non-Roma mothers in the Czech Republic and to investigate the potential causes of such differences. METHOD: A population-based study recruited 8938 non-Roma and 1388 Roma hospitalised singleton births that occurred in two Czech districts (Teplice and Prachatice) between 1995 and 2004. During their stay in hospital, mothers completed a questionnaire on their demographic and socioeconomic characteristics and maternal smoking and alcohol consumption. Data on maternal height and weight and on infants' birth weight and gestational age were taken from hospital records. RESULTS: Birth weight and gestational age of Roma infants was 373 (SE 15) g and 0.92 (0.05) weeks, respectively, lower than in non-Roma infants. Controlling for demographic, socioeconomic and behavioural factors reduced these differences to 133 (18) g and 0.57 (0.06) weeks, respectively (all p-values < 0.001). In terms of binary outcomes, the Roma vs. non-Roma odds ratios were 4.5 (95% CI 3.7–5.4) for low birth weight (< 2500 g), 2.8 (2.2–3.4) for preterm birth (< 37 weeks of gestation), and 2.9 (2.5–3.4) for intrauterine grown retardation (<10(th )percentile of birth weight for gestational age); controlling for all covariates reduced these odds ratios to 1.7 (1.3–2.2), 1.5 (1.1–2.0) and 1.3 (1.0–1.6), respectively. Maternal education made the largest contribution to the ethnic differences; the role of health behaviours was relatively modest. CONCLUSION: There are striking differences in birth outcomes between Roma and non-Roma mothers. The causes of these differences are complex but largely socioeconomic

    Coal Home Heating and Environmental Tobacco Smoke in Relation to Lower Respiratory Illness in Czech Children, from Birth to 3 Years of Age

    Get PDF
    OBJECTIVE: The objective of this study was to evaluate how indoor pollution from tobacco and home heating may adversely affect respiratory health in young children. DESIGN: A birth cohort was followed longitudinally for 3 years to determine incidence of lower respiratory illness (LRI). PARTICIPANTS: A total of 452 children born 1994–1996 in two districts in the Czech Republic participated. EVALUATIONS: Indoor combustion exposures were home heating and cooking fuel, mother’s smoking during pregnancy, and other adult smokers in the household. Diagnoses of LRI (primarily acute bronchitis) from birth to 3 years of age were abstracted from pediatric records. Questionnaires completed at delivery and at 3-year follow-up provided covariate information. LRI incidence rates were modeled with generalized linear models adjusting for repeated measures and for numerous potential confounders. RESULTS: LRI diagnoses occurred more frequently in children from homes heated by coal [vs. other energy sources or distant furnaces; rate ratio (RR) = 1.45; 95% confidence interval (CI), 1.07–1.97]. Maternal prenatal smoking and other adult smokers also increased LRI rates (respectively: RR = 1.48; 95% CI, 1.10–2.01; and RR = 1.29; 95% CI, 1.01–1.65). Cooking fuels (primarily electricity, natural gas, or propane) were not associated with LRI incidence. For children never breast-fed, coal home heating and mother’s smoking conferred substantially greater risks: RR = 2.77 (95% CI, 1.45–5.27) and RR = 2.52 (95% CI, 1.31–4.85), respectively. CONCLUSIONS: Maternal smoking and coal home heating increased risk for LRI in the first 3 years of life, particularly in children not breast-fed. RELEVANCE: Few studies have described effects of coal heating fuel on children’s health in a Western country. Breast-feeding may attenuate adverse effects of prenatal and childhood exposures to combustion products

    Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis

    Get PDF
    BACKGROUND: Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells. METHODS: We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients) microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17) was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR. RESULTS: Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1) distinguished large sets of IDC from ILC. CONCLUSION: IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN) and collagen triple helix repeat containing 1 (CTHRC1) which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue microarrays (EMP1, DVL1, DDR1) may represent novel immunohistochemical markers helpful in distinguishing between IDC and ILC. Further studies with larger sets of patients are needed to verify the gene expression profiles of various histological types of breast cancer in order to determine molecular subclassifications, prognosis and the optimum treatment strategies

    workingsci1.qk

    No full text
    corecore