53 research outputs found

    Domain Organization of Long Autotransporter Signal Sequences

    Get PDF
    Bacterial autotransporters represent a diverse family of proteins that autonomously translocate across the inner membrane of Gram-negative bacteria via the Sec complex and across the outer bacterial membrane. They often possess exceptionally long N-terminal signal sequences. We analyzed 90 long signal sequences of bacterial autotransporters and members of the two-partner secretion pathway in silico and describe common domain organization found in 79 of these sequences. The domains are in agreement with previously published experimental data. Our algorithmic approach allows for the systematic identification of functionally different domains in long signal sequences

    MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Get PDF
    Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization

    The heart in sporadic inclusion body myositis: a study in 51 patients

    Get PDF
    The purpose of this study was to explore the prevalence and nature of cardiac abnormalities in sporadic inclusion body myositis (sIBM). Fifty-one sIBM patients were cross-sectionally studied using history-taking, physical examination, measurements of serum creatine kinase activity, the MB fraction (CK-MB), cardiac troponin T (cTnT) and I (cTnI), a 12-lead electrocardiogram (ECG) and 2-dimensional echocardiography. Present cardiac history was abnormal in 12 (24%) out of 51 patients, 12 (24%) patients had abnormalities on ECG, mostly aspecific, and in 12 (24%) patients the echocardiograph showed abnormalities. Elevated CK-MB was present in 42 (82%) patients and 40 (78%) had an elevated cTnT in the absence of acute cardiac pathology. In contrast, in one patient (2%) cTnI was elevated. There was no apparent association between elevated biomarkers, ECG or echocardiographic abnormalities. The prevalence of cardiac abnormalities in sIBM does not seem to be higher than would be expected in these elderly patients. Elevated CK-MB and cTnT levels are common, in contrast to cTnI, but do not reflect cardiac pathology

    Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity

    Get PDF
    Targeting signals direct proteins to their extra - or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization (“NtraC model”) in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals

    The Plasmodium Export Element Revisited

    Get PDF
    We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide

    modlAMP: Python for antimicrobial peptides

    No full text
    Summary We have implemented the molecular design laboratory’s antimicrobial peptides package (modlAMP), a Python-based software package for the design, classification and visual representation of peptide data. modlAMP offers functions for molecular descriptor calculation and the retrieval of amino acid sequences from public or local sequence databases, and provides instant access to precompiled datasets for machine learning. The package also contains methods for the analysis and representation of circular dichroism spectra. Availability and Implementation The modlAMP Python package is available under the BSD license from URL http://doi.org/10.5905/ethz-1007-72 or via pip from the Python Package Index (PyPI). Supplementary information Supplementary data are available at Bioinformatics online.ISSN:1367-4803ISSN:1460-205

    Recurrent Neural Network Model for Constructive Peptide Design

    No full text
    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries

    Recurrent Neural Network Model for Constructive Peptide Design

    No full text
    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries
    corecore