103 research outputs found
Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage
Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60°/s. Pelvic and lower body kinematics and kinetics were measured pre- and 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p < 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p < 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise
Intensity of Resistance Exercise Determines Adipokine and Resting Energy Expenditure Responses in Overweight Elderly Individuals
OBJECTIVE - To evaluate the time course of leptin, adiponectin, and testing energy expenditure (REE) responses in overweight elderly mates after acute resistance exercise protocols of various intensity configurations. RESEARCH DESIGN AND METHODS - Forty inactive men (65-82 years) were randomly assigned to one of four groups (n = 10/group): control, low-intensity resistance exercise, moderate-intensity resistance exercise, and high-intensity resistance exercise. Exercise energy cost, REE, leptin, adiponectin, cortisol, insulin, lactate, glucose, nonesterified fatty acids (NEFAs), and glycerol were determined at baseline, immediately after exercise, and during a 72-h recovery period. RESULTS - Exercise energy cost was lower in high-intensity than in low-intensity and moderate-intensity groups (221.6 +/- 8.8 vs. 295.6 +/- 10.7 and 281.6 +/- 9.8 kcal, P < 0.001). Lactate, glucose, NEFAs, and glycerol concentrations increased (P < 0.001) after exercise and returned to baseline thereafter in all groups. REE increased (P < 0.001) in all groups at 12 h in an intensity-dependent manner (P < 0.05). REE reached baseline after 48 h in the low- and mode rate-intensity groups and after 72 h in the high-intensity group. Cortisol peaked in all active groups after exercise (P < 0.001) and remained elevated (P < 0.001) for 12 h. After adjustment for plasma volume shifts, leptin remained unaltered. Adiponectin concentration increased after 12 hand remained elevated for 24 h only in the high-intensity group (P < 0.001). CONCLUSIONS - Resistance exercise does not alter circulating leptin concentration but does increase REE and adiponectin in an intensity-dependent manner for as long as 48 and 24 h, respectively, in overweight elderly individuals. It appears that resistance exercise may represent an effective approach for weight management and metabolic control in overweight elderly individuals
Altered drop jump landing biomechanics following eccentric exercise-induced muscle damage
© 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.3390/sports9020024Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60âŠ/s. Pelvic and lower body kinematics and kinetics were measured preand 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p< 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p< 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise.This research was supported by the postdoctoral scholarship program implemented by University of Thessaly (Greece) and funded by the Stavros Niarchos Foundation, grant number 5394.02.02Published versio
Effects of cardiovascular, resistance and combined exercise training on cardiovascular, performance and blood redox parameters in coronary artery disease patients: An 8-month training-detraining randomized intervention
© 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.3390/antiox10030409It is well-documented that chronic/regular exercise improves the cardiovascular func-tion, decreases oxidative stress and enhances the antioxidant capacity in coronary artery disease (CAD) patients. However, there is insufficient evidence regarding the chronic effects of different types of training and detraining on cardiovascular function and the levels of oxidative stress and antioxidant status in these patients. Therefore, the present study aimed at investigating the effects of cardiovascular, resistance and combined exercise training followed by a three-month detraining period, on cardiovascular function, physical performance and blood redox status parameters in CAD patients. Sixty coronary artery disease patients were randomly assigned to either a cardiovascular training (CVT, N = 15), resistance training (RT, N = 11), combined cardiovascular and resistance training (CT, N = 16) or a control (C, N = 15) group. The training groups participated in an 8-month supervised training program (training three days/week) followed by a 3-month detraining period, while the control group participated only in measurements. Body composition, blood pressure, performance-related variables (aerobic capacity (VO2max ), muscle strength, flexibility) and blood redox status-related parameters (thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), reduced glutathione (GSH), oxidized glutathione (GSSG), catalase activity (CAT), protein carbonyls (PC)) were assessed at the beginning of the study, after 4 and 8 months of training as well as following 1, 2 and 3 months of detraining (DT). CVT induced the most remarkable and pronounced alterations in blood pressure (~9% reduction in systolic blood pressure and ~5% in diastolic blood pressure) and redox status since it had a positive effect on all redox-related variables (ranging from 16 to 137%). RT and CT training affected positively some of the assessed (TAC, CAT and PC) redox-related variables. Performance-related variables retained the positive response of the training, whereas most of the redox status parameters, for all training groups, restored near to the pre-exercise values at the end of the DT period. These results indicate that exercise training has a significant effect on redox status of CAD. Three months of detraining is enough to abolish the exercise-induced beneficial effects on redox status, indicating that for a better antioxidant status, exercise must be a lifetime commitment.This project was funded by the Cyprus Research Promotion Foundation, EP΄NE/0506/17Published versio
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20âmg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation
Assessment of the relationship between macronutrient intake and browning of white fat in adult males
Research conducted in rodents and humans present conflicting results on the relationship between caloric intake and the browning of subcutaneous white adipose tissue (scWAT). For example, exercise combined with caloric restriction did not change browning indices measured from human scWAT samples. In another study, caloric restriction in mice resulted in the browning of both scWAT and visceral white adipose tissue. Few investigators, however, have examined the relationship between differences in macronutrient intake and browning processes of human scWAT.Published versio
Respiratory and immune response to maximal physical exertion following exposure to secondhand smoke in healthy adults
© 2012 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.1371/journal.pone.0031880We assessed the cardiorespiratory and immune response to physical exertion following secondhand smoke (SHS) exposure through a randomized crossover experiment. Data were obtained from 16 (8 women) non-smoking adults during and following a maximal oxygen uptake cycling protocol administered at baseline and at 0-, 1-, and 3- hours following 1-hour of SHS set at bar/restaurant carbon monoxide levels. We found that SHS was associated with a 12% decrease in maximum power output, an 8.2% reduction in maximal oxygen consumption, a 6% increase in perceived exertion, and a 6.7% decrease in time to exhaustion (P<0.05). Moreover, at 0-hours almost all respiratory and immune variables measured were adversely affected (P<0.05). For instance, FEV 1 values at 0-hours dropped by 17.4%, while TNF-α increased by 90.1% (P<0.05). At 3-hours mean values of cotinine, perceived exertion and recovery systolic blood pressure in both sexes, IL4, TNF-α and IFN-Îł in men, as well as FEV 1/FVC, percent predicted FEV 1, respiratory rate, and tidal volume in women remained different compared to baseline (P<0.05). It is concluded that a 1-hour of SHS at bar/restaurant levels adversely affects the cardiorespiratory and immune response to maximal physical exertion in healthy nonsmokers for at least three hours following SHS. © 2012 Flouris et al.Published versio
Recovery kinetics of knee flexor and extensor strength after a football match
© 2015 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.1371/journal.pone.0128072We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level.Published versio
Blood as a reactive species generator and redox status regulator during exercise
The exact origin of reactive species and oxidative damage detected in blood is largely unknown. Blood interacts with all organs and tissues and, consequently, with many possible sources of reactive species. In addition, a multitude of oxidizable substrates are already in blood. A muscle-centric approach is frequently adopted to explain reactive species generation, which obscures the possibility that Sources of reactive species and oxidative damage other than skeletal muscle may be also at work during exercise. Plasma and blood cells can autonomously produce significant amounts of reactive species at rest and during exercise. The major reactive species generators located in blood during exercise may be erythrocytes (mainly due to their quantity) and leukocytes (mainly due to their drastic activation during exercise). Therefore, it is plausible to assume that oxidative stress/damage measured frequently in blood after exercise or any other experimental intervention derives, at least in part, from the blood. (C) 2009 Elsevier Inc. All rights reserved
- âŠ