18 research outputs found

    Cosmic Evolution in Brans-Dicke Chameleon Cosmology

    Full text link
    We have investigated the Brans-Dicke Chameleon theory of gravity and obtained exact solutions of the scale factor a(t)a(t), scalar field ϕ(t)\phi(t), an arbitrary function f(ϕ)f(\phi) which interact with the matter Lagrangian in the action of the Brans-Dicke Chameleon theory and potential V(ϕ)V(\phi) for different epochs of the cosmic evolution. We plot the functions a(t)a(t), ϕ(t)\phi(t), f(t)f(t) and V(ϕ)V(\phi) for different values of the Brans-Dicke parameter. In our models, there is no accelerating solution, only decelerating one with q>0q>0. The physical cosmological distances have been investigated carefully. Further the statefinder parameters pair and deceleration parameter are discussed.Comment: To be appear in "The European Physical Journal - Plus (EPJ Plus)",Extended version,15 pages, 17eps figure

    Investigating centering, scan length, and arm position impact on radiation dose across 4 countries from 4 continents during pandemic: mitigating key radioprotection issues

    Get PDF
    Purpose: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. Methods: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). Results: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11–40% relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027–0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). Conclusions: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte

    Investigating centering, scan length, and arm position impact on radiation dose across 4 countries from 4 continents during pandemic: Mitigating key radioprotection issues

    Get PDF
    Purpose: Optimization of CT scan practices can help achieve and maintain optimal radiation protection. The aim was to assess centering, scan length, and positioning of patients undergoing chest CT for suspected or known COVID-19 pneumonia and to investigate their effect on associated radiation doses. Methods: With respective approvals from institutional review boards, we compiled CT imaging and radiation dose data from four hospitals belonging to four countries (Brazil, Iran, Italy, and USA) on 400 adult patients who underwent chest CT for suspected or known COVID-19 pneumonia between April 2020 and August 2020. We recorded patient demographics and volume CT dose index (CTDIvol) and dose length product (DLP). From thin-section CT images of each patient, we estimated the scan length and recorded the first and last vertebral bodies at the scan start and end locations. Patient mis-centering and arm position were recorded. Data were analyzed with analysis of variance (ANOVA). Results: The extent and frequency of patient mis-centering did not differ across the four CT facilities (>0.09). The frequency of patients scanned with arms by their side (11�40 relative to those with arms up) had greater mis-centering and higher CTDIvol and DLP at 2/4 facilities (p = 0.027�0.05). Despite lack of variations in effective diameters (p = 0.14), there were significantly variations in scan lengths, CTDIvol and DLP across the four facilities (p < 0.001). Conclusions: Mis-centering, over-scanning, and arms by the side are frequent issues with use of chest CT in COVID-19 pneumonia and are associated with higher radiation doses. © 202

    Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments

    No full text
    This work investigates the effect of particle size in the thermoluminescence (TL) response of a quartz crystal that was initially crushed and classified into ten size fractions between 38 μm and 5 mm. Aliquots of each size fraction were sensitized with a dose of 25 kGy of γ rays and heat-treatments at 400 °C. TL glow curves of sensitized and non-sensitized samples were recorded as a function of different test-doses of γ rays. For the non-sensitized samples, the TL peak near 325 °C increases with the decrease in particle size. In the case of sensitized samples, a strong TL peak near 300 °C increases with the increase in particle size up to mean grain size equal to 304 μm. Above 304 μm, an abrupt reduction in the TL intensity is noticed for the sensitized peak. These effects are discussed in relation to the specific surface area of quartz particles and the intensity of the electron paramagnetic resonance signal of the E'1 center induced by the sensitization process
    corecore