22 research outputs found

    New Interpretation of the Wigner Function

    Get PDF
    I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the 'squeezed' Q function. This propagator leads to squeezing in one of the phase-space variables and anti-squeezing in the other. By noting that the Q function is related to the Wigner function by a special case of the above propagator, I am led to a new interpretation of the Wigner function

    Wave and pseudo-diffusion equations from squeezed states

    Get PDF
    We show that the probability distributions P(sub n)(q,p;y) := the absolute value squared of (n(p,q;y), which are obtained from squeezed states, obey an interesting partial differential equation, to which we give two intuitive interpretations: as a wave equation in one space dimension; and as a pseudo-diffusion equation. We also study the corresponding Wehrl entropies S(sub n)(y), and we show that they have minima at zero squeezing, y = 0

    Matrix Representation of Octonions and Generalizations

    Get PDF
    We define a special matrix multiplication among a special subset of 2N\x 2N matrices, and study the resulting (non-associative) algebras and their subalgebras. We derive the conditions under which these algebras become alternative non-associative and when they become associative. In particular, these algebras yield special matrix representations of octonions and complex numbers; they naturally lead to the Cayley-Dickson doubling process. Our matrix representation of octonions also yields elegant insights into Dirac's equation for a free particle. A few other results and remarks arise as byproducts.Comment: 18 printed page

    Contraction of broken symmetries via Kac-Moody formalism

    Full text link
    I investigate contractions via Kac-Moody formalism. In particular, I show how the symmetry algebra of the standard 2-D Kepler system, which was identified by Daboul and Slodowy as an infinite-dimensional Kac-Moody loop algebra, and was denoted by H2{\mathbb H}_2 , gets reduced by the symmetry breaking term, defined by the Hamiltonian H(β)=12m(p12+p22)αrβr1/2cos((ϕγ)/2). H(\beta)= \frac 1 {2m} (p_1^2+p_2^2)- \frac \alpha r - \beta r^{-1/2} \cos ((\phi-\gamma)/2). For this H(β)H (\beta) I define two symmetry loop algebras Li(β),i=1,2{\mathfrak L}_{i}(\beta), i=1,2, by choosing the `basic generators' differently. These Li(β){\mathfrak L}_{i}(\beta) can be mapped isomorphically onto subalgebras of H2{\mathbb H}_2 , of codimension 2 or 3, revealing the reduction of symmetry. Both factor algebras Li(β)/Ii(E,β){\mathfrak L}_i(\beta)/I_i(E,\beta), relative to the corresponding energy-dependent ideals Ii(E,β)I_i(E,\beta), are isomorphic to so(3){\mathfrak so}(3) and so(2,1){\mathfrak so}(2,1) for E0E0, respectively, just as for the pure Kepler case. However, they yield two different non-standard contractions as E0E \to 0, namely to the Heisenberg-Weyl algebra h3=w1{\mathfrak h}_3={\mathfrak w}_1 or to an abelian Lie algebra, instead of the Euclidean algebra e(2){\mathfrak e}(2) for the pure Kepler case. The above example suggests a general procedure for defining generalized contractions, and also illustrates the {\em `deformation contraction hysteresis'}, where contraction which involve two contraction parameters can yield different contracted algebras, if the limits are carried out in different order.Comment: 21 pages, 1 figur

    Quantum Bound States with Zero Binding Energy

    Full text link
    After reviewing the general properties of zero-energy quantum states, we give the explicit solutions of the \seq with E=0E=0 for the class of potentials V=γ/rνV=-|\gamma|/r^{\nu}, where 2-\infty 2, these solutions are normalizable and correspond to bound states, if the angular momentum quantum number l>0l>0. [These states are normalizable, even for l=0l=0, if we increase the space dimension, DD, beyond 4; i.e. for D>4D>4.] For ν<2\nu <-2 the above solutions, although unbound, are normalizable. This is true even though the corresponding potentials are repulsive for all rr. We discuss the physics of these unusual effects.Comment: 11 pages, 4 figures which can be generated from Mathematica commands given at the end of the file. Latex, REVISED--Fig. 4 Mathematica command improved and correcte
    corecore