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Abstract

We show that the probability distributions P.(q,p; ¥) := |(n|p, ¢; ¥)|?, which are obtained
from squeezed states, obey an interesting partial differential equation, to which we give two
intuitive interpretations: as a wave equation in one space dimension and also as a pseudo-
diffusion equation. We also study the corresponding Wehrl entropies S,.(y), and show that
they have minima at zero squeezing, y = 0.

1 Introduction

This talk is based mainly on a work which was done in collaboration with Salomon Mizrahi
from Brazil.

Squeezed oscillator states are defined in terms of the bosonic creation and annihilation op-
erators, a' := 5-(1 Z),anda:= &-(:c + £), as follows:

12;€) = p,;€) := D(@,P)S(E)I0), where z:= (g +ip)/V2, (1)

and |0) is the ground state of the harmonic oscillator. Both D and S are unitary operators. D
creates the coherent state, and is defined by

. 0
D(q,p) := exp[za' — z°a] = explipz - ‘15;] 1 (2)

and S(£) is the squeezing operator:

1 .

S(§) = eXP{-(EG" - £a%), (3)
where ¢ is a complex variable. For £ = 0, we recover the ordinary (unsqueezed ) coherent states.
The squeezed states satisfy the completness relation, [|p,g;€){(p,¢;§ | 4 = 1, for every €.
Therefore, d p

[Pep®) BE =1, where Pu(a.pi) = l(p. g€l 4)

where |n) is the number state. If we interpret the real parameters g and p as the position and
momentum variables, then (4) allows us to interpret the non-negative functions P, as proba-
bility distributions in the (q,p)-phase plane, for every n and §.



In this talk, I shall consider these P, for real values of the squeezing parameter £, which will
be denoted by y. In particular, I shall show that the P,(g,p;y) satisfy the interesting partial
differential equations (9) and (12), to which two intuitive interpretations can be given. Finally,
I shall show that the Wehrl entropy S,.(y) (14) of the P, must have their minima at zero
squeezing, y = 0.

2 Explicit Form of the Distributions P,

The distribution Po(q,p;€) := |(nlp, ¢; £)|* gives the probability of finiding n bosons (photons)
in the squeezed states |g,y; £). It is a physically important quantity, and it has been calculated
by different methods. The dependence of P,(g¢,p;£) on n was studied by Schleich and Wheeler
[2]. For € =y, the P, is given by the following complicated expression [1,3,7):

D) . 2 2
Puain) o= ool = 5L Si Gl exp |-SEE ] 20, (5

nl(y+1) 1+« -
where ) +
o 2y . _ 9 1Yp )
1= eV, —_— and w:= 6
7 T =1 + Y Y+l ©6)

and where H,(2,7;w) are the generalized Hermite polynomials (GHP ), which are defined in
terms of the raising operatores R(a, 8;z) = az — ﬂ% , as follows [1]:

. [n/3) n! A%
Buforfio) = Rr(a i) 1= 3 o (<) (e, M

These polynomials are equal to the standard Hermite polynomials for « = 2 and 8 = 1. In the
limit, 8 — 0, these H,(z) becomes simple powers of z: H,(a,0,z) = a™z". Therefore, in the
limit of zero squeezing, ¥ — 1, we have n — 0, so that the above GHP ’s become simple powers
of w. Thus, for y — 0, equation (5) gives the following well-known Poisson distribution of the
unsqueezed coherent states:

2n 2

P.(¢,p;0) = zp,.n. exp [-—%] , n>0, where p’:=¢*+p%, (8)

When discussing probability distributions, it is useful to think of the regions that are surrounded
by the equipotential curves, P,(g,p;y) = const. ; I shall call these regions potential regions.
Thus, the potential regions of the above Poisson distribution P,(g, p;0) are concentric circles in
the {q,p)-plane. But for y # 0, these regions will have approximately elliptical shapes, whose
the major axes lie along the p-axis for y < 0 and along the q-axis for y > 0. These regions
become more elongated in one direction and narrower in the other, as |y| increases.

3 The Partial Differential Equation for the P,

Since the integral (4) of the distributions P,(g,p;y) over the whole (q,p)-space remains con-
stant under squeezing, it is useful to think of the change of P.(q,p;y) as functions of y as a
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redistribution of probability densities in phase space, which maintains the positivity condi-
tion Pa(q,p;y) = O for all y. This redistribution of the P,(g,p; y) is governed by the following
interesting and amazingly simple partial differential equation:

o ) 1 0? 1 9% _ gy
a—,yPn(q,p,y('r)) =1 ( e ap,) Pu(g,p;y(7)), where ~v:i=¢e". (9)

This equation was originally obtained [1} by straightforward but lengthy differentiation of the
expression (5) , and by using the following property of the GHP [1]:

a - 1 8% -
a_an(aarh w) = —ZB—EH“(Q’ ﬂ,w) . (10)

However, we can now derive it by two other more general methods [5], as reported in the
summary section.

4 Interpretation as Wave and Pseudo-Diffusion Equa-
tions

I shall now present two possible intuitive interpretations of the above differential equation:

(I) D’Alembert or Wave Equation: The following is a new interpretation, which was
not discussed in [1): For a fized squeezing parameter y, equation (9) looks like the wave
equation for one space dimension g, if we think of the p variable in (9) as the time variable
t:

o 2 1
(gg - ;1;%) ®(g,t;y) = —4mp(q, y) ,  where  p(g,tiy) = -;B%Pn(q,t;y('r)) :
(11)

In this interpretation, the parameter v would then play the role of the speed of light ¢(n) in

matter, which depends on the parameter y, similar to the dependence of ¢(n) on the index

of refraction index n. If the P, are thought of as electromagnetic potentials $(g,t;y), then

45%P,,(q, p; y(7)) will play the role of a time-dependent charge distributions —4mp(g,t;y).

(II) Pseudo-Diffusion Equation: By substituting % = 262"3% into (9) , we obtain a more
symmetric differential equation for the Py:

9 e L w50 : 9
ayPn(q,p,y)—2(e 5 ¢ o P.(9,p5y) - (12)

This equation is also new and permits a more pertinent intuitive understanding of the
redistribution process of the P,, by comparing (12) with the diffusion equation in two
dimensions [6]:

2 2

0 0 1)
ET(q,p,t) =0 (5; + '6_1:7) T(q,p;t), (13)
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where o is the diffusion coefficient. Equations (12) and (13) are similar, if we interpret
the squeezing parameter y as the time variable. However, the two equations differ in two
interesting aspects:

(1) The sign in front of g-; in (12) is negative rather than positive. Such a “negative
diffusion coefficient” leads to “ infusion” rather than diffusion in the p-direction. Con-
sequently, as y increases, the equi-probability curves, P,(¢,p;y) = const., move towards
the origin along the p-axis, but away from the origin along the q-axis. Therefore, we ex-
pect the probability regions to be concentric elongated “quasi ellipses” which are extended
along the p-axis for y = —o0o0. They become more and more circular as y approaches zero,
and then stretch outwards along the q-axis, as y — oo. For the above reasons, we shall
call equations (9) and (12) “pseudo diffusion equation”.

(2) The “diffusion coefficients” exp[2y]/2 and — exp[—2y]/2 and in front of ai:y and a—asf in
(12) depend on y. For y — 400, the term %e”%’;Pn dominates the r.h.s. of (12) , whereas
for y = —o0, the second term dominates. This dependence on y can be given an interesting
intuitive explanation: Let us consider the redistribution process when y is very large: In
this case the probability densities P,(g,p;y) are extended in the g-direction and tightly
squeezed or compressed in the p-axis, which makes it difficult to compress them further
along the p-axis. For this reason the “infusion coefficient” becomes so small, namely
o exp[—2y]. In contrast, the diffusion along the g-axis must become faster and faster, in
order to diffuse all the incoming density flux from the other orthogonal p-direction, which
is entering the cigar-shaped potential regions through their lengthy boundaries.

5 The Wehrl Entropy for the P,

A useful measure for the information content of the probability distributions P,(g,p;y) is the
Gibbs or Wehrl entropy [7], which is defined by

Sa(y) := - /Pn(q,p;y)ln P.(g,p:y) d_ggg : (14)
Because of the symmetry P,(g,p; —y) = Pa(p,¢;y), the entropy (14) is even in y: Si(-y) =
S.(y)- Therefore, at y = 0 each S,(y) must have either a maximum or a minimum. We shall now
argue that $,(0) should correspond to a minumum: We assume that S.(y) does not oscillate
as a function of y. Therefore, it is enough to argue that S,(y) grows with |y| for large values
of |y| . For large positive y, equation (12) behaves essentially like a one-dimensional diffusion
equation in the g-variable. But it is well-known that the solutions of diffusion equations lead
to entropies which increase with time [6]. Therefore, the S,(y) must increase as y — oco. But
since the S,(y) are even in y, they must also grow as y — —oo. Hence, the 5,(0) must lie at
the bottom of the curves S(y) vs. y.

Finally, we note that the von Neumann entropy S,n(p) := —Tr(plnp) for the pure states
p := |n)(n| must vanisch. In contrast, explicit calculations of the Wehrl entropies of the Poisson
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distributions (8) shows that S,(0) > 1 for all n, in accordance with a conjecture by Wehrl [7],
which was proved by Lieb [8].

To summarize this section: in contrast to diffusion equations, where the entropies of their
solutions always increase with time, the entropies S,(y) for the solutions of the above pseudo-
diffusion equation first decrease monotonically as y grows from —oo to zero, but then increase
monotonically as y grows from zero to +oo.

6 Summary and Outlook

Two equivalent partial differential equations (9) and (12) were presented and then interpreted,
as wave and as pseudo-diffusion equations. The probability densities P,(g,p;y) (5) provide
infinite number of their solutions.

By the time of writing the present lecture notes, we succeeded in proving, by two general
methods, that the expectation values (g, p;£|O|q,p;€) of an arbitrary operator O, satisfy a
generalized version of the above partial differential equations, which also include rotations, i.e
for the general squeezing £ = re'®. Interesting examples of O are the number operators N and
N?; their expectation values provide the simplest solutions of (9) and (12) . Also the projection
operator |g,p;€){g,p; €|, and consequently its Wigner function, satisfy these equations.
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