
" /' -- r/ • f

if'

New Interpretation Of The Wigner Function

Jamil Daboul

Physics Department, Ben Gurion University of the Negev

84105 Beer Sheva, Israel

(E-mail: daboul@bguvms, bgu. ac. il)

Abstract

I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the
"squeezed" Q function. This propagator leads to squeezing in one of the phase-space variables
and anti-squeezing in the other. By noting that the Q function is related to the Wigner function
by a special case of the above propagator, I am led to a new interpretation of the Wigner function.

1 Introduction

The Wigner representation of any operator A is defined by

FW(A; p, q) - (q - a I A ] q + a) e2_Pda = Tr ( A W(p, q) ) ,
O_

(1)

where the rounded kets are eigenstates of the position operator, Q Ix) = x Ix), and W(p, q) - f_°¢oo

Iq + a)(q - a Ie2_aPda is a unitary and also a Hermitian operator, which can be interpreted as a

displaced parity operator [2]. The Wigner representation yields functions of two variables, p and

q, which may be looked upon as phase-space variables. These "Wigner functions" have interesting

properties and are useful for various calculations [1]. The Wigner functions are often referred to

as pseudo-probability functions, because they can take negative values, even when A is a positive

operator, A _> 0, such as the density operator p.

In contrast, the Husimi or Q representation [3] yield nonnegative functions for positive operators
A: These functions are defined as follows

Q(A; p, q; _) = (pq; _ I A I Pq; _) = Tr ( A YI(pq; _) ) , where YI(p, q; A) ---[ pq; _)(pq; _1 (2)

are projection operators on the squeezed states IPq; _), which are defined by [4]

IPq;_)=D(p,q)S(¢)IO ) , where _-ye _ (-co<y<co) (3)

and 10) is the ground state of a specific harmonic oscillator, al0 ) = 0. (i.e. a is the annihilation

operator with a definite frequency w0; ttenceforth, we set h = m = w0 = 1, for simplicity.) In (3)

D(p, q) = exp[-i(qP - pQ)] , (4)

is the displacement operator which generates the coherent states when applied to [0), and

' " 7Z]

is the squeezing operator, where the squeeze parameter y vanishes in the coherent-state limit.
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If A is a density matrix p, then its Q function Q(p;p, q; _) can naturally be interpreted as a

probability distribution. To emphasize this fact, the Q functions were denoted by P in [5, 6],

instead of Q here.

For simplicity, I shall from now on discuss only squeezings which are pure boosts, without

rotation, i.e. with _ = 0 in (3), and use the squeezing parameter _ := e2u instead of y.

The Q and the Wigner functions are related as follows [I, 6]:

d,d _
Q( A; p, q; ,k) =//-_ exp[-A-l(p - p') 2 - )_(q-q')2lW(A;p',q' 1. (8)

In this paper, I shall first recall in Sec.2 that the Q functions (2) satisfy the partial differential

equation (7). This equation describes how the Q functions Q(p, q; _) get changed in phase space

(p, q) as the squeezing parameter _ is increased. In Sec.3 I define a forward-backward propagator

for this equation. Finally, in Sec.4 I show that the Gaussian factor in the integral (6) is equal to

a special case of the above propagator. This fact will yield the new interpretation of the Wigner
function.

2 The Pseudo-Diffusion Equation

In previous papers [5, 6], it was shown that the Q functions, and other quantities, obey the following

partial differential equation

4 A2 Q(A;p,q;A)=O, where A:=e 2u, (7)

where y is the squeezing parameter, as defined in (3). Eq. (7) was called [5, 6] pseudo-di_usion

equation, because (a) it resembles the diffusion equation in 2 dimensions [7], where the parameter
02 02

plays the role of time, and (b) the coefficients of _ and _ in (7) have opposite signs. Therefore,
this equation describes a diffusive process in the p variable and an infusive one in the q variable

for all _. In this way a thin distribution along the q-axis get continuously deformed into a thin

distribution along the p-axis, as A is increased from 0 to oo.

3 Solutions by Separation of Variables

The pseudo-diffusion equation (7) was solved by two methods [6]: by Fourier transform and by

separation of variables. I shall now recall the latter method: Writing the solution as a product of

two functions, Q(p, q; _) = O(p, ,k)¢(q, _), where 0 depends only on p and _, and ¢ depends only

on q and ),, we get

0= C3Q = _¢ 71 _p2 A2 0q2 0_

- 0 40p 2 6(p;£)-_ 0h 4_ 20q 2 ¢(q;A) . (8)

Since the first term in (8) depends only on p and _, while the second term in (8) depends only on

q and _, we conclude that each of them must be equal to a function of £ only, which we denote
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by f(A). In [6] the solutions for f(A) _ 0 were discussed. But for my purposes here, I shall only

consider the case f(A) = 0. For this case equation (8) yields the following two equations:

4 0(p; = 0 (9)

(10)

where _° = -_-_a--_- was used in (10). We see that # obeys a 1-dimensional diffusion equation in

p, where ¼A plays the role of time. Similarly, ¢ obeys a diffusion equation in q, but with ¼A-1

playing the role of time. The solutions of the diffusion equation are well known [7]. In particular,

the propagators of Eqs. (9) and (10) are specific solutions, given by

1
GI(p - p', A - #) -

v/Tr (A - #) exp

Gl(q- q',A -1 - a -1) 1 [ (q_q,)2 ] (12)= x/_ .(A_l _ a_l) exp A_1..... _a_l j , for < a.

for ,k > fl, (11)

Clearly, the products of the above two propagators yield a different solution of the pseudo-diffusion

equation (7) for every 4-tupel (p_, q_,lt, a):

G(p - p', q - q'; )_, #, a) -- Gl(p-p',&-#)Gl(q-q',)_-l-a -1) for #<,k<a(13)

1 [ (p_ p_)2 (q _ q,)2 ] (14)-- 7rv/(A _ _t)(A_ 1 _ a_l) exp A - # A----f---a--_l J

I shall call these G functions two-sided or forward-backward propagators of the pseudo-diffusion

equation (7), because they involve the two squeezing parameters, # and a, which are on opposite

sides of A. In particular, these G solutions have the proper limit when A is approached from

opposite directions:

lim G(p - p', q - q'; A, #, a) = 6(p - p')5(q - q') .
p--*A-e , a---*A+e

(15)

Since the heart operator q) is a linear, any superposition of the above 2-sided propagators will

also be a solution of the pseudo-diffusion equation. In particular, if we fix the squeezing parameters

# and a and integrate only over p_ and q_, we get solutions of the form

f(p, q; _, ,_) =//dp'dq' G(p - p', q - q'; ,k, #, a) f(p', q'; #, a), for a>A>/_, (16)

for any given function f(p, q;#, a), provided that the integrals (16) exist.

4 The New Interpretation of the Wigner Function

An extreme case of the 2-sided propagators (14) is obtained by choosing # = 0 and a = co. These

squeezing parameters correspond to the values -co and +co of the y = ½ In ), variable, respectively.

For this choice of # and a, ,_ is free to take any positive value co > )_ > 0. Moreover, the square-root

factors in the two propagators cancel out. For this case, Eq. (16) becomes

f(P' q; )_' _) = fjf dp'dq------_Trexp[-)_-l(P - p,)2 _ )_(q _ q,)2] f(p,, ql; O, co), for A > O. (17)

27



If we compare(17) with the well known relation (6) between the Q function and the Wigner

function, we realize immediately that these two functions are simply related by the special 2-sided

propagator G(p - p_, q - q_; ,k, 0, co). Therefore, we are led in a natural way to the interpretation
that the Wigner function is a Q function, which is squeezed to y = +co in the q variable and

anti-squeezed to y = -co in the p variable.

Note that by applying the following relation

dPl exp[_,_-l(p-p')2]g(p')=exp -_ g(p), for _>0, (18)

to (17), we obtain a formal solution f(p, q; )_, )_) of the pseudo-diffusion equation (7), in terms of a

differential operator applied to an arbitrary function g(p, q) - f(p, q; O, co) of p and q:

f(p,q;)_,)_)=exp 0--_p2+ _q2 f(p,q; 0, co) . (19)

One can easily check, by simple differentiation with respect to ),, that this formal solution satisfies

the pseudo-diffusion equation (7). In particular, if g(p, q) is equal to the Wigner function of an

operator A, then f(p, q; )_, )_) is the corresponding Q function. This formal relatonship between
these two functions was noted by Husimi [3].

As an application, we note that the relation (6) holds for every operator A, so that the corre-

sponding two operators in Eqs. (1) and (2) are also related by the above special propagator:

ff dlYdq I exp[__-l(p _ p,)2 _ ,k(q - q,)2] W(p', q'). (20)II(p, _)q;
JJ 7r

5 Conclusions

A one-sided propagator, which we would get for example from (14) by choosing #, a < A, is not

suitable for the pseudo-diffusion equation (7), because one of the Gaussian factors in (14) will blow

up at infinity. By showing that a special 2-sided propagator takes the Wigner function into a Q
function, I concluded that the Wigner function can be regarded as a Q function, which is squeezed

backwards (/_ = 0) in the p variable and forwards (a = co) in q variable.
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