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Abstract

I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the
“squeezed” Q function. This propagator leads to squeezing in one of the phase-space variables
and anti-squeezing in the other. By noting that the Q function is related to the Wigner function
by a special case of the above propagator, I am led to a new interpretation of the Wigner function.

1 Introduction

The Wigner representation of any operator A is defined by
W(ain,a) = [~ (a-al Alq+a) Hda =Tr (AW(p,9)) )
—o0

where the rounded kets are eigenstates of the position operator, Q |z) = z |z), and W(p, q) = [°0,
| g+ a)(q — a|e*Pda is a unitary and also a Hermitian operator, which can be interpreted as a
displaced parity operator [2]. The Wigner representation yields functions of two variables, p and
g, which may be looked upon as phase-space variables. These “Wigner functions” have interesting
properties and are useful for various calculations [1]. The Wigner functions are often referred to
as pseudo-probability functions, because they can take negative values, even when A is a positive
operator, A > 0, such as the density operator p.

In contrast, the Husimi or Q representation [3] yield nonnegative functions for positive operators
A: These functions are defined as follows

Q(A;p,¢;¢) = (pg; ¢ | Al pg; () =Tr (A TI(pg;¢) ), where II(p,q;A) =|pg;¢)(pg;i¢|  (2)
are projection operators on the squeezed states |pg; ¢), which are defined by (4]
lpg;¢) = D(p,9)S(¢)I0) , where (=ye* (—o00 <y < ) (3)

and |0) is the ground state of a specific harmonic oscillator, a]0) = 0. (i.e. a is the annihilation
operator with a definite frequency wp; Henceforth, we set A = m = wg = 1, for simplicity.) In (3)

D(p, q) = exp[—i(qP — pQ)] , (4)
is the displacement operator which generates the coherent states when applied to |0), and
1 Q+iP
_ - 12 _ %2 —
s =ew |3 (- ¢a?)] | (a=3LT) (5)

is the squeezing operator, where the squeeze parameter y vanishes in the coherent-state limit.
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If A is a density matrix p, then its Q function Q(p; p,q;¢) can naturally be interpreted as a
probability distribution. To emphasize this fact, the Q functions were denoted by P in 5, 6],
instead of @ here.

For simplicity, I shall from now on discuss only squeezings which are pure boosts, without
rotation, i.e. with ¢ = 0 in (3), and use the squeezing parameter A := e?¥ instead of y.

The Q and the Wigner functions are related as follows [1, 6]:

QUA;D, G A = f / flp,qu—l exp[-A"1(p — p)2 — Mg — ¢ | W(A;Y', ¢). (6)

In this paper, I shall first recall in Sec.2 that the Q functions (2) satisfy the partial differential
equation (7). This equation describes how the Q functions Q(p,q; \) get changed in phase space
(p, q) as the squeezing parameter X is increased. In Sec.3 I define a forward-backward propagator
for this equation. Finally, in Sec.4 I show that the Gaussian factor in the integral (6) is equal to
a special case of the above propagator. This fact will yield the new interpretation of the Wigner
function.

2 The Pseudo-Diffusion Equation

In previous papers [5, 6], it was shown that the Q functions, and other quantities, obey the following
partial differential equation

Qp,q; ») QA;D, ¢ A) = [_8_ _1 (2—2— - —1——62—)] Q(A;p,q;2) =0 where A:=¢€%, (7)
T e AN 4\ 8p?  A209g? e ’ ' '

where y is the squeezing parameter, as defined in (3). Eq. (7) was called [5, 6] pseudo-diffusion
equation, because (a) it resembles the diffusion equation in 2 dimensions [7], where the parameter A
plays the role of time, and (b) the coefficients of 96327 and 6227 in (7) have opposite signs. Therefore,
this equation describes a diffusive process in the p variable and an infusive one in the g variable
for all A. In this way a thin distribution along the g-axis get continuously deformed into a thin

distribution along the p-axis, as A is increased from 0 to co.

3 Solutions by Separation of Variables

The pseudo-diffusion equation (7) was solved by two methods [6]: by Fourier transform and by
separation of variables. I shall now recall the latter method: Writing the solution as a product of
two functions, Q(p,q; ) = 8(p, \)¥(g, A), where 6 depends only on p and A, and ¥ depends only
on g and A, we get

1 1 fo 1[&# 18
0=3% w(a‘z[a—pi‘va—qib"’/’
1{8 10 1 S} 1 62
= 5(57‘25?)9(’“"@(‘a—x'mw)w(“*)- ®)

Since the first term in (8) depends only on p and A, while the second term in (8) depends only on
g and A, we conclude that each of them must be equal to a function of A only, which we denote
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by f(A). In [6] the solutions for f(A) # 0 were discussed. But for my purposes here, I shall only
consider the case f(A) = 0. For this case equation (8) yields the following two equations:

a 106°
(ﬁ - ZW) 6(m;x) = 0 9)
a 1 9 1 {2 18
(—5 - ma—qz) Y(g:A) = 2 (W - ZEF) YA = 0, (10)
where }% = —lea—f_y was used in (10). We see that € obeys a 1-dimensional diffusion equation in

p, where %/\ plays the role of time. Similarly, ¢ obeys a diffusion equation in ¢, but with 41/\‘1
playing the role of time. The solutions of the diffusion equation are well known [7]. In particular,
the propagators of Egs. (9) and (10) are specific solutions, given by

1 _ w2
Gilp—p,A—p) = mexp[—%], for A>pu, (11)
_ 1 — A\2
Gilg—¢ 2 '1-07l) = \/ﬂ,\_—l___?rje)(p [—%)—_T] , for A<o. (12)

Clearly, the products of the above two propagators yield a different solution of the pseudo-diffusion
equation (7) for every 4-tupel (¢, ¢, u,0):

Glp—-1,9-d;M\po) = Gilp—=p, A—p)Gilg—¢, ' —a71) for p<A<o(13)

- 1 p-v)? (@—d)7?
- ’T\/(/\—u)(/\“—a“)em[— A—p _,\-1_0—1]' (1)

I shall call these G functions two-sided or forward-backward propagators of the pseudo-diffusion
equation (7), because they involve the two squeezing parameters, u and o, which are on opposite
sides of A\. In particular, these G solutions have the proper limit when A is approached from
opposite directions:

lim Glp-7v,q—d;A\po)=6p-p)8(qa—-¢). (15)
p—A—€, 0—Ate

Since the heart operator Q is a linear, any superposition of the above 2-sided propagators will
also be a solution of the pseudo-diffusion equation. In particular, if we fix the squeezing parameters
1 and ¢ and integrate only over p’ and ¢/, we get solutions of the form

fo, g\ N = // dp'dd Glp—v',q—d¢; M uo) (P, d;n0), for o>A>p, (16)

for any given function f(p, g; i, o), provided that the integrals (16) exist.

4 The New Interpretation of the Wigner Function

An extreme case of the 2-sided propagators (14) is obtained by choosing 4 = 0 and ¢ = oo. These
squeezing parameters correspond to the values —oo and +o0o of the y = %In A variable, respectively.
For this choice of u and o, A is free to take any positive value oo > A > 0. Moreover, the square-root
factors in the two propagators cancel out. For this case, Eq. (16) becomes

10,000 = [[ T exploa -3 ~ Mo - P10, 430,000, for A>0. (1)

s
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If we compare (17) with the well known relation (6) between the Q function and the Wigner
function, we realize immediately that these two functions are simply related by the special 2-sided
propagator G(p — p,q — ¢'; A, 0,00). Therefore, we are led in a natural way to the interpretation
that the Wigner function is a Q function, which is squeezed to y = +oo in the ¢ variable and
anti-squeezed to y = —oo in the p variable.

Note that by applying the following relation

LA exp{—A"1(p — p')*] g(p') = exp éiz 9(») , for A>0, (18)
VZ3) 4 dp

to (17), we obtain a formal solution f(p,q; A, A) of the pseudo-diffusion equation (7), in terms of a
differential operator applied to an arbitrary function g(p,q) = f(p,¢;0,00) of p and ¢:

1(,8 ,18

iAA) = ~ A==+ ;0 . 1
One can easily check, by simple differentiation with respect to A, that this formal solution satisfies
the pseudo-diffusion equation (7). In particular, if g(p,q) is equal to the Wigner function of an
operator A, then f(p,q; A, ) is the corresponding Q function. This formal relatonship between
these two functions was noted by Husimi [3].

As an application, we note that the relation (6) holds for every operator A, so that the corre-
sponding two operators in Egs. (1) and (2) are also related by the above special propagator:

(p,q; A) = / / d — exp[-A"p-7) - Mg - I W@, 7). (20)

5 Conclusions

A one-sided propagator, which we would get for example from (14) by choosing g, < A, is not
suitable for the pseudo-diffusion equation (7), because one of the Gaussian factors in (14) will blow
up at infinity. By showing that a special 2-sided propagator takes the Wigner function into a Q
function, I concluded that the Wigner function can be regarded as a Q function, which is squeezed
backwards (i = 0) in the p variable and forwards (¢ = 00) in ¢ variable.
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