11 research outputs found

    Clarifying Assumptions about Intraoperative Stress during Surgical Performance: More Than a Stab in the Dark: Reply

    Get PDF
    Ó The Author(s) 2011. This article is published with open access at Springerlink.com We thank Dr. Ali for his concise annotation of our efforts to validate a tool that evaluates mental workload in surgery [1, 2]. Unlike other safety critical domains, the field of surgery has been slow to acknowledge the impact of intraoperative stress on surgical performance, but recently a sea change has been triggered by authorities in the field of surgical education [3]. We agree with Ali that stress is not by default detrimental to performance. Our aim was to develop a diagnostic tool that identifies the factors that contribute to disrupted performance, should it occur. Indeed, studies of the effects of acute stress on operating performance have shown considerable variability, ranging from no effect to either facilitative or debilitative effects [3–5]. The Yerkes-Dodson law emerged from the earliest attempts to explain the relationship between physiological arousal and performance, but it has been criticized for treating stress as a unitary construct, influenced solely by physiological factors [6]. More recently, Catastrophe Theory has been invoked to model the relationship, using both physiological and psychological (cognitive anxiety) components of stress [7]. The model proposes that physiological arousal displays a mild inverted-U relationship with performance when cognitive anxiety is low, but that catastrophic declines in performance can occur if both physiological arousal and cognitive anxiety are high. Recent surgical literature has elucidated the complexity of M. Wilson (&

    Implicit motor learning promotes neural efficiency during laparoscopy

    Get PDF
    Background An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. Methods In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Results Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Conclusions Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery. © 2011 The Author(s).published_or_final_versio

    Conscious monitoring and control (reinvestment) in surgical performance under pressure.

    Get PDF
    Research on intraoperative stressors has focused on external factors without considering individual differences in the ability to cope with stress. One individual difference that is implicated in adverse effects of stress on performance is "reinvestment," the propensity for conscious monitoring and control of movements. The aim of this study was to examine the impact of reinvestment on laparoscopic performance under time pressure

    Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation.

    Get PDF
    BACKGROUND: There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. OBJECTIVE: The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. METHODS: We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. RESULTS: Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). CONCLUSIONS: This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory

    Conscious control is associated with freezing of mechanical degrees of freedom during motor learning

    Get PDF
    This study investigated whether conscious control is associated with freezing of mechanical degrees of freedom during motor learning. Participants practiced a throwing task using either error-strewn or error-reduced practice protocols, which encourage high or low levels of conscious control, respectively. After 24 hr, participants engaged in a series of delayed retention and transfer tests. Furthermore, propensity for conscious control was assessed using participants' ratings and freezing was gauged through movement variability of the throwing arm. Performance was defined by mean radial error. In the error-strewn group, propensity for conscious control was positively associated with both freezing and performance. In the error-reduced group, propensity for conscious control was negatively associated with performance, but not with freezing. These results suggest that conscious control is associated with freezing of mechanical degrees of freedom during motor learning

    Multitask training promotes automaticity of a fundamental laparoscopic skill without compromising the rate of skill learning.

    Get PDF
    A defining characteristic of expertise is automated performance of skills, which frees attentional capacity to better cope with some common intraoperative stressors. There is a paucity of research on how best to foster automated performance by surgical trainees. This study examined the use of a multitask training approach to promote automated, robust laparoscopic skills.Eighty-one medical students completed training of a fundamental laparoscopic task in either a traditional single-task training condition or a novel multitask training condition. Following training, participants' laparoscopic performance was tested in a retention test, two stress transfer tests (distraction and time pressure) and a secondary task test, which was included to evaluate automaticity of performance. The laparoscopic task was also performed as part of a formal clinical examination (OSCE).The training groups did not differ in the number of trials required to reach task proficiency (p = .72), retention of skill (ps > .45), or performance in the clinical examination (p = .14); however, the groups did differ with respect to the secondary task (p = .016). The movement efficiency (number of hand movements) of single-task trainees, but not multitask trainees, was negatively affected during the secondary task test. The two stress transfer tests had no discernable impact on the performance of either training group.Multitask training was not detrimental to the rate of learning of a fundamental laparoscopic skill and added value by providing resilience in the face of a secondary task load, indicative of skill automaticity. Further work is needed to determine the extent of the clinical utility afforded by multitask training

    Development and Validation of a Surgical Workload Measure: The Surgery Task Load Index (SURG-TLX)

    Get PDF
    Background: The purpose of the present study was to develop and validate a multidimensional, surgery-specific workload measure (the SURG-TLX), and to determine its utility in providing diagnostic information about the impact of various sources of stress on the perceived demands of trained surgical operators. As a wide range of stressors have been identified for surgeons in the operating room, the current approach of considering stress as a unidimensional construct may not only limit the degree to which underlying mechanisms may be understood but also the degree to which training interventions may be successfully matched to particular sources of stress. Methods: The dimensions of the SURG-TLX were based on two current multidimensional workload measures and developed via focus group discussion. The six dimensions were defined as mental demands, physical demands, temporal demands, task complexity, situational stress, and distractions. Thirty novices were trained on the Fundamentals of Laparoscopic Surgery (FLS) peg transfer task and then completed the task under various conditions designed to manipulate the degree and source of stress experienced: task novelty, physical fatigue, time pressure, evaluation apprehension, multitasking, and distraction. Results: The results were supportive of the discriminant sensitivity of the SURG-TLX to different sources of stress. The sub-factors loaded on the relevant stressors as hypothesized, although the evaluation pressure manipulation was not strong enough to cause a significant rise in situational stress. Conclusions: The present study provides support for the validity of the SURG-TLX instrument and also highlights the importance of considering how different stressors may load surgeons. Implications for categorizing the difficulty of certain procedures, the implementation of new technology in the operating room (man-machine interface issues), and the targeting of stress training strategies to the sources of demand are discussed. Modifications to the scale to enhance clinical utility are also suggested. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Perceptual modification of the built environment to influence behaviour associated with physical activity: Quasi-experimental field studies of a stair banister illusion

    Get PDF
    Re-engineering the built environment to influence behaviours associated with physical activity potentially provides an opportunity to promote healthier lifestyles at a population level. Here we present evidence from two quasi-experimental field studies in which we tested a novel, yet deceptively simple, intervention designed to alter perception of, and walking behaviour associated with, stairs in an urban area. Objectives. To examine whether stair banister adjustment has an influence on perceptions of stair steepness or on walking behaviour when approaching the stairs. Methods. In Study 1, we asked participants (n=143) to visually estimate the steepness of a set of stairs viewed from the top, when the stair banister was adjusted so that it converged with or diverged from the stairs (±1.91º) or remained neutral (±0º). In Study 2, the walking behaviour of participants (n=36) was filmed as they approached the stairs to descend, unaware that the banister converged, diverged or was neutral. Results. In Study 1, participants estimated the stairs to be steeper if the banister diverged from rather than converged with the stairs. The effect was greater when participants were unaware of the adjustment. In Study 2, walking speed was significantly slower when the banister diverged from rather than converged with the stairs. Conclusions. These findings encourage us to speculate about the potential to economically re-engineer features of the built environment in order to provide opportunities for action (affordances) that invite physical activity behaviour or even promote safer navigation of the environment

    Exploring the interaction between implicit and explicit processes in motor learning

    No full text
    abstractpublished_or_final_versionHuman PerformanceDoctoralDoctor of Philosoph
    corecore