75 research outputs found

    Tumor exome sequencing and copy number alterations reveal potential predictors of intrinsic resistance to multi-targeted tyrosine kinase inhibitors

    Get PDF
    Multi-targeted tyrosine kinase inhibitors (TKIs) have broad efficacy and similar FDA-approved indications, suggesting shared molecular drug targets across cancer types. Irrespective of tumor type, 20-30% of patients treated with multi-targeted TKIs demonstrate intrinsic resistance, with progressive disease as a best response. We conducted a retrospective cohort study to identify tumor (somatic) point mutations, insertion/deletions, and copy number alterations (CNA) associated with intrinsic resistance to multi-targeted TKIs. Using a candidate gene approach (n=243), tumor next-generation sequencing and CNA data was associated with resistant and non-resistant outcomes. Resistant individuals (n=11) more commonly harbored somatic point mutations in NTRK1, KDR, TGFBR2, and PTPN11 and CNA in CDK4, CDKN2B, and ERBB2 compared to non-resistant (n=26, p<0.01). Using a random forest classification model for variable reduction and a decision tree classification model, we were able to differentiate intrinsically resistant from non-resistant patients. CNA in CDK4 and CDKN2B were the most important analytical features, implicating the cyclin D pathway as a potentially important factor in resistance to multi-targeted TKIs. Replication of these results in a larger, independent patient cohort has potential to inform personalized prescribing of these widely utilized agents

    Key Lessons Learned from Moffitt's Molecular Tumor Board: The Clinical Genomics Action Committee Experience

    Get PDF
    The increasing practicality of genomic sequencing technology has led to its incorporation into routine clinical practice. Successful identification and targeting of driver genomic alterations that provide proliferative and survival advantages to tumor cells have led to approval and ongoing development of several targeted cancer therapies. Within many major cancer centers, molecular tumor boards are constituted to shepherd precision medicine into clinical practice

    The Florida pancreas collaborative next-generation biobank: Infrastructure to reduce disparities and improve survival for a diverse cohort of patients with pancreatic cancer

    Get PDF
    Background: Well-annotated, high-quality biorepositories provide a valuable platform to support translational research. However, most biorepositories have poor representation of minority groups, limiting the ability to address health disparities. Methods: We describe the establishment of the Florida Pancreas Collaborative (FPC), the first state-wide prospective cohort study and biorepository designed to address the higher burden of pancreatic cancer (PaCa) in African Americans (AA) compared to Non-Hispanic Whites (NHW) and Hispanic/Latinx (H/L). We provide an overview of stakeholders; study eligibility and design; recruitment strategies; standard operating procedures to collect, process, store, and transfer biospecimens, medical images, and data; our cloud-based data management platform; and progress regarding recruitment and biobanking. Results: The FPC consists of multidisciplinary teams from fifteen Florida medical institutions. From March 2019 through August 2020, 350 patients were assessed for eligibility, 323 met inclusion/exclusion criteria, and 305 (94%) enrolled, including 228 NHW, 30 AA, and 47 H/L, with 94%, 100%, and 94% participation rates, respectively. A high percentage of participants have donated blood (87%), pancreatic tumor tissue (41%), computed tomography scans (76%), and questionnaires (62%). Conclusions: This biorepository addresses a critical gap in PaCa research and has potential to advance translational studies intended to minimize disparities and reduce PaCa-related morbidity and mortality

    Enabling Precision Medicine in Cancer Care Through a Molecular Data Warehouse: The Moffitt Experience

    Get PDF
    PURPOSE: The use of genomics within cancer research and clinical oncology practice has become commonplace. Efforts such as The Cancer Genome Atlas have characterized the cancer genome and suggested a wealth of targets for implementing precision medicine strategies for patients with cancer. The data produced from research studies and clinical care have many potential secondary uses beyond their originally intended purpose. Effective storage, query, retrieval, and visualization of these data are essential to create an infrastructure to enable new discoveries in cancer research. METHODS: Moffitt Cancer Center implemented a molecular data warehouse to complement the extensive enterprise clinical data warehouse (Health and Research Informatics). Seven different sequencing experiment types were included in the warehouse, with data from institutional research studies and clinical sequencing. RESULTS: The implementation of the molecular warehouse involved the close collaboration of many teams with different expertise and a use case-focused approach. Cornerstones of project success included project planning, open communication, institutional buy-in, piloting the implementation, implementing custom solutions to address specific problems, data quality improvement, and data governance, unique aspects of which are featured here. We describe our experience in selecting, configuring, and loading molecular data into the molecular data warehouse. Specifically, we developed solutions for heterogeneous genomic sequencing cohorts (many different platforms) and integration with our existing clinical data warehouse. CONCLUSION: The implementation was ultimately successful despite challenges encountered, many of which can be generalized to other research cancer centers

    Medicina e Cirurgia de Animais de Companhia

    Get PDF
    NF1 mutations predispose to neurofibromatosis type 1 (NF1) and women with NF1 have a moderately elevated risk for breast cancer, especially under age 50. Germline genomic analysis may better define the risk so screening and prevention can be applied to the individuals who benefit the most. Survey conducted in several neurofibromatosis clinics in the United States has demonstrated a 17.2% lifetime risk of breast cancer in women affected with NF1. Cumulated risk to age 50 is estimated to be 9.27%. For genomic profiling, fourteen women with NF1 and a history of breast cancer were recruited and underwent whole exome sequencing (WES), targeted genomic DNA based and RNA-based analysis of the NF1 gene. Deleterious NF1 pathogenic variants were identified in each woman. Frameshift mutations because of deletion/duplication/complex rearrangement were found in 50% (7/14) of the cases, nonsense mutations in 21% (3/14), in-frame splice mutations in 21% (3/14), and one case of missense mutation (7%, 1/14). No deleterious mutation was found in the following high/moderate-penetrance breast cancer genes: ATM, BRCA1, BRCA2, BARD1, BRIP1, CDH1, CHEK2, FANCC, MRE11A, NBN, PALB2, PTEN, RAD50, RAD51C, TP53, and STK11. Twenty-five rare or common variants in cancer related genes were discovered and may have contributed to the breast cancers in these individuals. Breast cancer predisposition modifiers in women with NF1 may involve a great variety of molecular and cellular functions

    Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Get PDF
    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias

    Fast all versus all genotype comparison using DNA/RNA sequencing data: method and workflow

    No full text
    Abstract Background Massively parallel sequencing includes many liquid handling steps which introduce the possibility of sample swaps, mixing, and duplication. The unique profile of inherited variants in human genomes allows for comparison of sample identity using sequence data. A comparison of all samples vs. each other (all vs. all) provides both identification of mismatched samples and the possibility of resolving swapped samples. However, all vs. all comparison complexity grows as the square of the number of samples, so efficiency becomes essential. Results We have developed a tool for fast all vs. all genotype comparison using low level bitwise operations built into the Perl programming language. Importantly, we have also developed a complete workflow allowing users to start with either raw FASTQ sequence files, aligned BAM files, or genotype VCF files and automatically generate comparison metrics and summary plots. The tool is freely available at https://github.com/teerjk/TimeAttackGenComp/ . Conclusions A fast and easy to use method for genotype comparison as described here is an important tool to ensure high quality and robust results in sequencing studies
    • …
    corecore