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ABSTRACT

Multi-targeted tyrosine kinase inhibitors (TKIs) have broad efficacy and similar 
FDA-approved indications, suggesting shared molecular drug targets across cancer 
types. Irrespective of tumor type, 20-30% of patients treated with multi-targeted TKIs 
demonstrate intrinsic resistance, with progressive disease as a best response. We 
conducted a retrospective cohort study to identify tumor (somatic) point mutations, 
insertion/deletions, and copy number alterations (CNA) associated with intrinsic 
resistance to multi-targeted TKIs. Using a candidate gene approach (n=243), tumor 
next-generation sequencing and CNA data was associated with resistant and non-
resistant outcomes. Resistant individuals (n=11) more commonly harbored somatic 
point mutations in NTRK1, KDR, TGFBR2, and PTPN11 and CNA in CDK4, CDKN2B, 
and ERBB2 compared to non-resistant (n=26, p<0.01). Using a random forest 
classification model for variable reduction and a decision tree classification model, 
we were able to differentiate intrinsically resistant from non-resistant patients. CNA 
in CDK4 and CDKN2B were the most important analytical features, implicating the 
cyclin D pathway as a potentially important factor in resistance to multi-targeted TKIs. 
Replication of these results in a larger, independent patient cohort has potential to 
inform personalized prescribing of these widely utilized agents.

INTRODUCTION

Increasing evidence supports the classification of 
tumors based on genetic and molecular characteristics rather 

than site of origin, which has translated into the ability to 
predict drug response utilizing tumor genetics rather than 
tumor type (i.e., histology or site of origin) in some instances 
[1]. For example, using multiple genetic platforms, The 

www.impactjournals.com/oncotarget/         Oncotarget, 2017, Vol. 8, (No. 70), pp: 115114-115127

                                                      Research Paper

http://www.impactjournals.com/oncotarget/


Oncotarget115115www.impactjournals.com/oncotarget

Cancer Genome Atlas Research Network defined four 
molecular subtypes of breast cancer (Luminal A, Luminal B, 
HER2-enriched, and Basal-like) and found that one subtype 
(Basal-like) is more similar to serous ovarian cancer than to 
other breast cancers [2]. Further analysis showed that, due 
to their molecular similarities, Basal-like breast cancers 
and serous ovarian cancers are likely susceptible to similar 
targeted treatments. In another multiplatform analysis of 
twelve tissue-defined cancer types, eleven major subtypes 
were identified, with only five subtypes corresponding to 
their tissue of origin, and the remaining six subtypes being 
shared by distinct cancer types (e.g., lung squamous, head 
and neck, and some bladder cancers fell into a single subtype) 
[3]. Studies such as these have influenced clinical cancer drug 
development. The classification and treatment of tumors 
based on molecular alterations is currently being studied 
through the use of basket trials, such as NCI-MATCH and 
NCI-MPACT, which randomize patients to an individualized 
targeted therapy arm or a non-pathway-specific arm 
independent of tumor histology [4]. We hypothesize that 
genetic alterations within tumors, regardless of site of origin 
or histology, can be used as a biomarker of response to 
targeted anticancer therapies.

The broad efficacy of multi-targeted tyrosine kinase 
inhibitors (TKIs) across tumor types suggests similarities 
in the genetics of the tumors they are used to treat. The 
multi-targeted TKIs (i.e., axitinib, cabozantinib, pazopanib, 
regorafenib, sorafenib, sunitinib, and vandetanib) currently 
have FDA-approved indications in seven histological 
tumor types, and are used off-label in additional solid and 
hematologic malignancies. While the clinical trials of these 
agents demonstrated overall efficacy, a substantial number 
of individuals never responded to therapy. This is a clinical 
challenge for most targeted anticancer agents [5]. In the 
pivotal phase III clinical trials that led to approval of each of 
the multi-targeted TKIs, approximately 20 to 30% of patients 
showed a best response of progressive disease, demonstrating 
intrinsic resistance [6–13]. In an exploratory study (n=262) 
examining intrinsic resistance to multi-targeted TKIs across 
tumor types, we observed an intrinsic resistance rate of 21%, 
consistent with that seen in clinical trials (unpublished data). 
No patient demographic or clinical factors (e.g., tumor type or 
drug received) were associated with intrinsic resistance. This 
supports the hypothesis that genetic factors may be important 
in predicting intrinsic resistance to the multi-targeted TKIs. 
We conducted a retrospective case-control study using a 
candidate gene approach to identify somatic point mutations, 
insertions/deletions, and copy number alterations (CNAs) 
associated with resistance to multi-targeted TKIs across 
tumor types.

RESULTS

Patient population and phenotypes

A total of 50 unique patients were included in this 
study (Table 1). The average age was 60 years old and the 

majority of individuals were white (88%) non-Hispanic 
(90%) males (72%). The most common tumor types being 
treated were sarcoma (48%) and renal cell carcinoma 
(40%), as would be expected, and the majority of patients 
received pazopanib (38%), followed by sorafenib (30%) 
and sunitinib (28%). One patient received regorafenib 
and one axitinib. Of the 50 patients included, 11 (22%) 
were classified as resistant, 26 (52%) as non-resistant, and 
13 had unclassifiable responses. This corresponded to an 
overall resistance rate of 30.5% (11/36) observed in our 
cohort. After correcting for multiple comparisons using 
false discovery rate (FDR), there were no statistically 
significant differences in the demographic and clinical 
characteristics of resistant and non-resistant patients. 
Resistant patients discontinued multi-targeted TKIs 
significantly sooner than non-resistant patients did (U = 
14.5, p <0.0001, Figure 1).

Next-generation sequencing: quality control

A total of 24 samples underwent targeted exome 
sequencing under the TCC protocol. The target region was 
1,321 genes covering 3.8 Mb. The median number of reads 
aligned per sample was 15,283,830. Median read depth of 
coverage was 141x. A median of 93.7% of coding bases 
were covered at least 10x across samples. For the 25 tumor 
samples that underwent WES, an average coverage of 151x 
(95% CI 140 - 163) per base was achieved. The average 
total number of reads per sample was 1.83 x 108 (95% CI 
1.75 x 108 - 1.92 x 108) or 91.5 million paired-end reads, 
with an average of 20% duplicate reads and 98% of reads 
mapped to the human reference genome. After removing 
duplicates, paired-end reads were properly paired overall 
(average per sample 94%). An average of 74,349 variants 
(point mutations and insertion/deletions) were detected per 
sample, of which 22,993 (31%) were within coding regions 
of the genome, and 11,590 (16%) were non-synonymous 
variants. There were five genes (CDK12, FGFR4, MLL2, 
LRP1B, and ARAF) with significant variation by sequencing 
method (FDR-corrected p-values all <0.005), warranting 
exclusion from further analyses. Four genes (BRCA2, 
CDK12, MLL2, and VHL) were differentially mutated 
(p-value < 0.05) between renal cell carcinoma patients 
and sarcoma patients; however, these differences were not 
significant when correcting for multiple comparisons (FDR 
q-values >0.5).

Next-generation sequencing: genetic associations

We identified four genes (NTRK1, KDR, TGFBR2, 
and PTPN11) more commonly mutated in resistant 
patients than non-resistant patients (Figure 2A). The 
finding with the lowest p-value was NTRK1, in which 3 
(30%) resistant patients carried somatic coding mutations 
(2 point mutations and 1 splice site variant) versus zero 
non-resistant patients (p = 0.02). Nonsynonymous coding 
mutations in KDR, PTPN11, and TGFBR2 were present 



Oncotarget115116www.impactjournals.com/oncotarget

Table 1: Patient demographics (n = 49). Demographics are broken down by phenotype for individuals who underwent 
next-generation sequencing (n=37) and copy number alteration analysis (n=29)

Next-generation sequencing Copy number alteration

Characteristic All 
patients
(n = 50)

Resistant
(n = 11)

Non-
resistant
(n = 26)

P-value 
(FDR)#

Resistant
(n = 8)

Non-resistant
(n = 21)

P-value (FDR)#

Age* 0.19 0.06

 Mean ± SD 60.2 ± 12 55.2 ± 
13.1

61.2 ± 
12.6 (0.39) 52.9 ± 

13.9 63.1 ± 11.3 (0.09)

 Median 62 61 62.0 58.5 66

 Range 34 – 80 36 – 70 34 – 80 36 – 68 39 – 80

Sex 0.05 0.03

 Male 36 (72) 7 (63.6) 24 (92.3) (0.15) 4 (50) 19 (90.5) (0.07)

 Female 14 (28) 4 (36.3) 2 (7.7) 4 (50) 2 (9.5)

Race 0.66 0.27

 White 44 (88) 10 (90.9) 24 (92.3) (0.80) 7 (87.5) 21 (100) (0.33)

 Black 3 (6) 1 (9.1) 0 1 (12.5) 0

 Asian 2 (4) 0 1 (3.8) 0 0

 Unknown 1 (2) 0 1 (3.8) 0 0

Ethnicity 1.0 (1.0) 0.48

 Hispanic 5 (10) 1 (9.1) 3 (11.5) 1 (12.5) 1 (4.8) (0.48)

 Non-Hispanic 45 (90) 10 (90.9) 23 (88.5) 7 (87.5) 20 (95.2)

Cancer type 0.03 0.007

 Sarcoma 24 (48) 6 (54.5) 9 (34.6) (0.15) 4 (50) 5 (23.8) (0.04)

 Renal cell 
carcinoma 20 (40) 2 (18.2) 16 (61.5) 1 (12.5) 15 (71.4)

 Hepatic 3 (6) 1 (9.1) 1 (3.8) 1 (12.5) 1 (4.8)

 Breast 1 (2) 1 (9.1) 0 1 (12.5) 0

 Colorectal 1 (2) 1 (9.1) 0 1 (12.5) 0

 Melanoma 1 (2) 0 0 0 0

Multi-targeted 
TKI 0.44 0.03

 Pazopanib 19 (38) 5 (45.5) 7 (26.9) (0.66) 4 (50) 4 (19.0) (0.07)

 Sorafenib 15 (30) 3 (27.3) 10 (38.5) 3 (37.5) 9 (42.9)

 Sunitinib 14 (28) 2 (18.2) 8 (30.8) 0 8 (38.1)

 Axitinib 1 (2) 0 1 (3.8) 0 0

 Regorafenib 1 (2) 1 (9.1) 0 1 (12.5) 0

*Age represents the age at multi-targeted TKI initiation.
#P-value for continuous variables represents the logistic regression p-value and categorical data was compared between 
resistant and non-resistant individuals using Fisher’s exact test. FDR represents the FDR-corrected p-value.
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Figure 1: Time to multi-targeted tyrosine kinase inhibitor discontinuation. Data represents mean and standard deviation. 
**Mann-Whitney U p-value < 0.0001.

Figure 2: Differences in next-generation sequencing variants. (A) OncoPrint of somatic nonsynonymous point mutations and 
insertions/deletions observed differentially by phenotype. (B) Distribution of somatic nonsynonymous point mutations or splice site 
variants in the four key genes.



Oncotarget115118www.impactjournals.com/oncotarget

in two (20%) resistant patients and zero non-resistant 
patients (p = 0.08). Altogether, 55% of resistant patients 
harbored mutations in one or more of these genes, while 
zero non-resistant patients carried mutations in these genes 
(Fisher’s exact p-value = 0.0002, Figure 2B). Gene set 
enrichment identified trends of receptor binding, activity, 
protein kinase, tyrosine, and transmembrane within the 
top gene hits. Of the four top hits, KDR and PTPN11 
were included in screening 1,001 cancer cell lines in the 
Genomics in Drug Sensitivity in Cancer database [14, 15]. 
Presence of KDR mutations was consistently predicted to 
confer resistance to multi-targeted TKIs, while presence of 
PTPN11 mutations tended to predict sensitivity to multi-
targeted TKIs.

Copy number alterations

Somatic CNA data was generated for 29 
individuals, of which 8 (27.6%) were classified as 
resistant. All samples resulted in data that met pre-
specified quality control criteria. Individuals exhibited 
a diverse range of somatic CNAs, with some individuals 
demonstrating much more genomic instability than 
others. A total of 55 (22.6%) genes harbored CNAs 
that met specified filtering criteria (Figure 3). No genes 
met the FDR-corrected significance level; however, 
three genes (CDK4, CDKN2B, and ERBB2) met the 
exploratory cut-off (FDR-corrected p < 0.3). CNAs 
in CDKN2B were only observed in resistant patients, 
while CNAs in CDK4 and ERBB2 were less common 
in resistant patients (only non-resistant patients harbored 
CNAs in ERBB2). All of the CNAs in CDKN2B and 
ERBB2 were homozygous losses, and the majority 
(14/16, 87.5%) of aberrations in CDK4 were also losses. 
Gene set enrichment identified cancer pathways, cyclin, 
and kinase as network trends between the three gene hits 
for CNA.

Decision tree for combined data

The most informative CNA and next-generation 
sequencing features from the random forest classification 
model were used to generate a decision tree for identifying 
resistant individuals. After quality control, data for 29 
individuals with sequencing and CNA results were 
included in the construction of the final tree. Five genes 
(CDKN2B, CDK4, TGFBR2, EPHA3, and TNFAIP3) were 
identified as important for differentiating resistant from 
non-resistant individuals and were selected as features 
in the final decision tree (Figure 4). CNA in CDKN2B 
and CDK4 were the most informative and explained 
responses for 55% (16/29) of the population. Interestingly, 
in measuring the importance of variables using the mean 
decrease in Gini score, all gene hits from individual 
sequencing (NTRK1, KDR, TGFBR2, and PTPN11) 
and CNA (CDK4, CDKN2B, and ERBB2) analysis 
were identified as being amongst the most informative 
variables (Figure 4, Supplementary Table 2). The decision 
tree model resulted in a high sensitivity and specificity 
for differentiating resistant individuals (0.75 and 1, 
respectively; balanced accuracy 0.88); however, leave-
one-out cross-validation (LOOCV) resulted in a lower 
sensitivity and specificity (0.25 and 0.95, respectively; 
balanced accuracy 0.6), indicating that the model 
constructed on all of the data is overfitting. Although the 
sensitivity dropped substantially after LOOCV, model 
specificity remained high, suggesting these features are 
robustly able to distinguish non-resistant samples in this 
rather small cohort. It further suggested that having the 
identified combination of mutations increases one’s odds 
of being resistant (OR 6.67), however this result was not 
statistically significant (p>0.05). These features may be 
good candidates for follow-up analysis, but extensive 
external validation and larger sample sizes will be needed 
to develop a more clinically relevant predictive model.

Figure 3: Copy number alterations (CNAs) observed by phenotype. *Genes that met pre-specified cut-off for exploratory hits 
(i.e., differential CNAs between resistant and non-resistant individuals).
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DISCUSSION

We conducted a retrospective candidate gene study 
to identify somatic point mutations and copy number 
alterations associated with intrinsic resistance to multi-
targeted TKIs. Using next-generation sequencing, we 
identified four genes commonly mutated in resistant 
patients, but not mutated in non-resistant patients: 
NTRK1, KDR, TGFBR2, and PTPN11. Interestingly, three 
of the four top hits (TGFR, KDR, and NTRK1) encode 
transmembrane protein kinases that are known targets of 
multi-targeted TKIs to varying degrees. The final gene, 
PTPN11, encodes SHP2, a tyrosine phosphatase that 
mediates signaling of oncogenic tyrosine kinases, such as 
Ras-ERK-AKT signaling pathways.

All four of the top gene hits from sequencing 
analysis are known to be mutated in cancer patients and 
have some literature suggesting possible associations with 
resistance and/or prognosis. KDR encodes the vascular 
endothelial growth receptor 2 (VEGFR2), a tyrosine kinase 
that mediates VEGF-induced endothelial proliferation, 
survival, and migration. KDR is commonly mutated across 
cancer types, and is one of the primary targets of the multi-
targeted TKIs, with up to eighty percent of activity being 
inhibited by TKIs [16]. Therefore, mutations in the gene 
encoding VEGFR2 represent a plausible mechanism of 
resistance to these agents. In fact, escape from VEGFR2 
signaling dependency has been proposed as a mechanism 

of acquired resistance to the multi-targeted TKIs [17]. 
In a recent retrospective analysis of archived renal cell 
carcinoma patients treated with sunitinib, Stubbs and 
colleagues found no association between KDR expression 
and overall or progression-free survival, but did not assess 
mutations [18]. However, a retrospective study of 275 
sarcoma patients identify a significant correlation between 
high VEGFR2 protein expression and decreased patient 
survival (p <0.001) [19].

The most common NTRK1 alterations observed in 
cancer are gene fusions; however, point mutations have 
also been reported in numerous solid tumors [20, 21]. 
Multiple studies have linked NTRK1 overexpression to 
tumor progression and poor outcomes in solid cancers 
[22–24], and NTRK1 mutations confer acquired resistance 
to NTRK inhibitors [25]. Somatic mutations of TGFBR2 
are commonly observed across solid tumor types [20, 
21]. The majority of studies exploring the clinical 
significance of TGFBR2 mutations are in the context 
of breast cancer, where high expression of TGFBR2 
is associated with tumor metastasis and response to 
chemotherapy [26–28]. Associations between somatic 
TGFBR2 alterations and cancer progression occur in a 
range of solid tumor types, including gastric, bladder, and 
squamous cell carcinoma [29–31]. PTPN11 mutations are 
most commonly associated with Noonan syndrome and 
juvenile myelomonocytic leukemia; however, activating 
somatic mutations have been observed in solid tumors, 

Figure 4: Decision tree for differentiating resistant from non-resistant patients. Branches represent decisions based on genes 
identified as influential in differentiating phenotypes. A loss represents a homozygous copy number loss; a gain represents a copy number 
gain greater than seven; a mutation represents any non-synonymous or missense mutation in a coding region of the gene.
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including colorectal, breast, and renal cell carcinomas 
[20, 21]. These mutations enhanced cancer progression, 
invasion, and metastasis [32–34] and were associated with 
decreased response rates in hepatocellular carcinoma, 
glioma, and gastric cancers [32, 35, 36]. In an elegant 
in vitro study that utilized colon and melanoma cancer 
cells, Prahallad and colleagues demonstrated that PTPN11 
activating mutations were present in the setting of both 
intrinsic and acquired resistance and that inhibition 
of PTPN11 is lethal in cancer cells driven by activated 
tyrosine kinases [37].

We identified three genes (CDK4, CDKN2B, and 
ERBB2) with differential patterns of CNAs between 
resistant and non-resistant patients. Interestingly, CDK4 
and CDKN2B both encode for proteins involved in the 
cyclin-dependent (cyclin D) pathway, which regulates 
progression through the cell cycle. The cyclin D pathway 
is commonly dysregulated in solid malignancies 
through somatic copy number alterations [38]. In our 
cohort, we observed a higher frequency of CDKN2B 
losses in resistant patients, while non-resistant patients 
more commonly harbored losses in CDK4 (Figure 5). 
Biologically, CDK4 functions as a positive regulator of 
the cell cycle, while CDKN2B is a negative regulator. 
Therefore, loss of CDK4 results in cell cycle arrest and 
tumor cell senescence, while loss of CDKN2B maintains 

cell cycle progression and tumor cell growth. The CNAs 
observed in our cohort suggest that cyclin D regulation 
may serve as an important secondary or bypass track 
for cancer progression in individuals treated with multi-
targeted TKIs. In fact, reduced expression of CDKN2A 
(a tumor suppressor protein similar to CDKN2B), has 
been observed in sarcoma progression and correlated with 
reduced patient survival [39]. ERBB2 encodes HER2, a 
transmembrane tyrosine kinase that regulates the PI3K/
AKT pathway upstream of mTOR. Interestingly, after 
therapeutic failure with multi-targeted TKIs, mTOR 
inhibitors are recommended as treatment options. We 
observed that patients non-resistant to multi-targeted TKIs 
more commonly harbored ERBB2 losses, which suggests 
that mTOR may not be overregulated in these individuals, 
but perhaps is an important mechanism of tumorigenesis 
in the resistant patients.

The combination of using random forest 
classification models for variable reduction and 
constructing a decision tree using the combined next-
generation sequencing and CNA results generated a 
translatable model. The genetic alterations that were 
identified as being most informative were CNAs in 
CDKN2B and CDK4, further supporting a potential roll 
of the cyclin D pathway in resistance to multi-targeted 
TKIs. EPHA3 and TNFAIP3 were identified as important 

Figure 5: Copy number alterations (CNAs) in the cyclin-dependent (cyclin D) pathway may regulate progression 
through the cell cycle. The cyclin D pathway regulates progression through the cell cycle, ultimately regulating cell division (mitosis, 
or M phase). The CNAs in genes relevant to this pathway may modulate cell cycle progression as depicted in the figure.
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based on the random forest classification model, but were 
not identified in separate next-generation sequencing or 
CNA analyses; however, both of these genes have been 
previously associated with prognosis and resistance. 
EPHA3 encodes a protein tyrosine kinase receptor and its 
expression has been associated with high invasive capacity 
and poor overall survival in hepatocellular carcinoma, 
gastric cancer, and glioblastoma [40–42]. Additionally, 
EPHA3 has been associated with the regulation of multi-
drug resistance in small cell lung cancer via the PI3K/
BMX/STAT3 signaling pathway [43]. TNFAIP3 encodes 
a zinc finger protein that serves as a tumor suppressor 
through its potent inhibition of the NF-κB signaling 
pathway [44]. TNFAIP3 has also been associated with 
regulating drug resistance in multiple solid tumor 
types [45, 46]. Therefore, dysregulation of these genes 
represents a biologically plausible mechanism of intrinsic 
resistance to multi-targeted TKIs. 

While the decision tree explained our data well, it 
appears to be overfitted based on the reduced performance 
with LOOCV, indicating that additional research is needed 
to develop a model that will be predictive of patient 
outcomes. A larger cohort is needed to robustly predict 
intrinsic resistance in independent datasets. Although this 
model is not robust enough for clinical use, we believe 
the five genes identified as being the most important for 
distinguishing resistant samples are strong candidates for 
additional follow-up analysis. 

The most notable limitation of this study is the 
sample size. To address this limitation, we elected to 
use a candidate gene approach to decrease the multiple 
testing burden. While this was a good method for 
increasing statistical power, limitations to the candidate 
gene approach exist, with the main disadvantage being 
the inability to identify completely novel or unexpected 
findings. However, the complete paucity of data on 
resistance to multi-targeted TKIs and, even more-so, 
intrinsic resistance to multi-targeted TKIs makes any 
information novel and valuable to this field. Nevertheless, 
the identification and collection of data from an 
independent replication cohort would be invaluable to 
the field. Another limitation of our study, inherent to its 
retrospective design, was the use of samples collected 
for clinical purposes as opposed to prospective collection 
for research purposes. However, the samples included in 
our study were all collected prior to multi-targeted TKI 
initiation, with the exception of one. The one individual 
with a sample collected after TKI treatment was 
intrinsically resistant to sorafenib, and we believe that any 
mutations that conferred intrinsic resistance would persist 
during and after TKI treatment.

We conducted an exploratory study to identify 
somatic point mutations, insertions/deletions, and copy 
number alterations characteristic in individuals with 
intrinsic resistance to multi-targeted TKIs. We identified 
potential predictors of resistance that each have biological 

plausibility; however, we acknowledge that multiple 
other factors may be important in determining who will 
respond to these agents. For example, pharmacokinetics 
and pharmacodynamics may affect drug penetration and 
exposure. Using MALDI-MSI (matrix-assisted laser 
desorption ionization mass spectrometry imaging) to 
visualize the distribution patterns of multi-targeted TKIs 
in mouse models, Torok and colleagues determined that 
poor drug penetration in some tumors resulted in primary 
resistance [47]. Clinical variability in drug concentrations, 
despite receiving the same dose, was associated with 
variability in side effects and survival outcomes [48, 49]. 
Lysosomal sequestration has also been demonstrated 
to confer resistance to the multi-targeted TKIs [50, 51] 
and was associated with conferring cross-resistance to 
the multi-targeted TKIs [52]. Finally, germline genetics 
in drug transporters, such as ABCB1 and ABCG2, or 
pharmacodynamic proteins, such as BIM, may also 
influence response to these agents [53–55]. While many 
factors must be considered when developing an optimized 
algorithm for predicting resistance in clinical practice, this 
study identified a combination of mutations and CNA that 
were associated with resistance to multi-targeted TKIs. With 
additional validation, preemptive identification of patients 
intrinsically resistant to multi-targeted TKIs will inform 
personalized treatment decisions to maximize outcomes 
while avoiding unnecessary exposures and toxicities.

MATERIALS AND METHODS

Patient population

Patients were identified from the Total Cancer Care 
(TCC) cohort at Moffitt Cancer Center, an institutional review 
board (IRB)-approved biobanking protocol (MCC14690, 
MCC13579) in which individuals agree to provide tissue and 
blood samples for research and to be followed throughout 
their lifetime [56]. Additional Moffitt Cancer Center 
Scientific Review Committee and IRB-approvals were 
granted to access tissue samples and conduct this particular 
study (MCC18790). Individuals eligible for study inclusion 
were patients consented between January 1, 1994 and 
December 31, 2015 over the age of 18 years diagnosed with 
any type of solid tumor and treated with a multi-targeted TKI 
(axitinib, cabozantinib, pazopanib, regorafenib, sorafenib, 
sunitinib, or vandetanib). Individuals were included if they 
had targeted exome sequencing or whole exome sequencing 
(WES) data available through the TCC protocol or if a tumor 
FFPE sample was available that could be used for DNA 
extraction and WES. Individuals treated with a multi-targeted 
TKI for a hematologic malignancy were excluded.

Phenotyping

Data was initially abstracted in a standardized 
manner from the TCC biorepository system (TransMed, 
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Cupertino, CA). Data abstracted included demographic 
variables (date of birth, gender, race, and ethnicity) as well 
as clinical information [medical record numbers (MRNs), 
date of diagnosis, primary site at diagnosis, histology, first 
course of treatment, multi-targeted TKI received, start 
and stop date of TKI, and date of death or last follow-up]. 
Sources for these data were the Florida Cancer Registry 
and electronic medical records. Information abstracted 
from TransMed was used to guide manual chart reviews.

Two clinicians and researchers performed 
independent manual chart reviews using the patients’ 
MRNs. Chart reviews included the validation of 
information generated using TransMed abstraction 
and manual review of patients’ clinical notes and 
imaging (PET/CT/MRI) results before and after TKI 
administration. Data collected included radiologists’ and 
clinicians’ impressions of disease before and after TKI 
initiation (e.g., stable vs. progressive vs. responding, 
based on imaging studies) and time to drug change or 
discontinuation. Physicians’ recommendations at first 
imaging follow-up (generally 2-3 months post-initiation) 
were used to identify patients intrinsically resistant to 
multi-targeted TKIs. The decision to stop TKI therapy due 
to cancer progression on imaging studies was classified as 
intrinsic resistance. Patients who continued TKI therapy 
due to response, stable disease, or mixed response on first 
imaging follow-up, and patients who met these criteria 
but stopped therapy due to side effects were classified 
as non-resistant. Individuals who stopped therapy early 
due to side effects or were lost to follow-up (i.e., those 
without first-imaging follow-up) could not confidently be 
classified were excluded from analyses. Based on these 
data, reviewers documented their individual impressions 
of patients as either resistant or non-resistant. Phenotype 
classifications were then compared and a third reviewer, a 
medical oncologist experienced with TKI prescribing and 
follow-up, provided adjudication when necessary.

Next-generation sequencing and copy number 
alterations

WES was performed in order to identify somatic 
mutations in the coding regions of the human genome. 
Briefly, 200 ng of DNA, as quantified by qPCR, was 
used as input for library preparation with the SureSelectXT 
Reagent Kit (Agilent, Santa Clara, CA). For each tumor 
DNA sample, a genomic DNA library was constructed 
according to the SureSelectXT Target Enrichment for 
Illumina Multiplexed Sequencing (#G7530-90000) 
protocol (Agilent), including the suggested modifications 
for FFPE-derived DNA samples. The pre-captured library 
was amplified, and the size and quality of the library was 
evaluated using a 2100 BioAnalzyer (Agilent) and Qubit™ 
quantification (Thermo Fisher Scientific, Waltham, MA). 
Approximately 500 to 750 ng of pre-captured library was 
used for hybridization at 65°C for 24 hr. Hybridization and 

target enrichment were conducted using the SureSelectXT 
Clinical Research Exome kit (Agilent). The post-
captured library was amplified and evaluated with a 2100 
Bioanalyzer (Agilent). The enriched library was quantified 
using a Library Quantification Kit for NGS (KAPA 
Biosystems, Wilmington, MA), and samples were diluted 
to a 4 nM concentration. Denaturation was conducted 
using NaOH, followed by neutralization with Tris buffer 
pH 8.5, and samples were diluted to a concentration of 20 
pM in HT1. Next, samples were diluted to concentrations 
between 1.7 pM to 2.2 pM for sequencing with a v2 
sequencing reagent kit and a NextSeq 500 desktop 
sequencer (Illumina, San Diego, CA). Approximately 85 
million 75 base paired-end reads were generated for each 
DNA sample.

Individuals with targeted gene sequencing data 
available had sequencing performed previously through 
collaboration with the Beijing Genomics Institute 
(Shenzhen, China). Briefly, tumor samples underwent 
targeted gene sequencing using a custom SureSelect 
platform (Agilent, Santa Clara, CA) targeting 1,321 
cancer-related genes and 2 x 90bp massively parallel 
sequencing using a Genome Analyzer IIx (Illumina, San 
Diego, CA). In order to identify whole genome CNA and 
loss-of-heterozygosity, the OncoScan® FFPE Assay Kit 
(Affymetrix, Santa Clara, CA) was used according to the 
manufacturer’s protocol, with an input of 80 ng of FFPE-
extracted DNA.

Candidate gene selection

To decrease multiple comparison correction and 
increase the likelihood of identifying biologically plausible 
associations, we utilized a candidate gene approach for 
analysis. Candidate genes included genes known to be 
important in solid tumor biology and anticancer drug 
response were selected utilizing the overlapping genes 
reported on clinical cancer genetic testing platforms (such 
as FoundationOne®) and those captured with the targeted 
sequencing platform designed specifically for the TCC 
study cohort (Supplementary Table 1).

Data quality control and variant detection

Whole exome sequencing reads were aligned to 
the reference human genome (hs37d5) with the Burrows-
Wheeler Aligner [57], and duplicate identification, 
insertion/deletion realignment, quality score recalibration, 
and variant identification were performed with Picard 
(Broad Institute, http://broadinstitute.github.io/picard/) 
and the Genome Analysis ToolKit (GATK) v2.2-Lite 
[58]. Genotypes were determined across all samples at 
variant positions. Sequence variants were annotated to 
determine genic context (i.e., non-synonymous, missense, 
splicing) using ANNOVAR [59], and summarized using 
spreadsheets and a genomic data visualization tool, 

http://broadinstitute.github.io/picard/
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VarSifter [60]. Additional contextual information from 
other studies was added, including allele frequency from 
1000 Genomes [61] and the NHLBI Exome Sequence 
Project [62], in silico function impact predictions 
(PolyPhen and SIFT), and observed impacts from 
databases including ClinVar (NCBI, http://www.ncbi.
nlm.nih.gov/clinvar/), the Catalogue of Somatic Mutations 
in Cancer (COSMIC) [63], and The Cancer Genome 
Atlas (TCGA, https://cancergenome.nih.gov/). Somatic 
mutations were prioritized by excluding variants observed 
in 1000 Genomes [61] and variants observed at >5% in an 
internal dataset of adjacent normal (i.e., non-tumor) tissue. 
Variants with GATK variant quality score recalibration 
(VQSR) tranche > 99.9 or genotype quality (GQ) < 15 
were excluded.

The CNA data generated was analyzed using Nexus 
Copy Number™ 6.0 software (BioDiscovery, El Segundo, 
CA) utilizing the TuScan™ algorithm, specifically 
designed for OncoScan® FFPE Assay data [64]. The 
estimated CNA regions were annotated with the reference 
human genome (hg19) and the evaluation of array 
performance was measured using default criteria (MAPD 
≤ 0.3 and ndSNPQC ≥ 26). Plots of whole genome CNAs 
and minor (or B) allele frequencies (BAFs) were generated 
for each individual. Briefly, the BAF was calculated as the 
count of minor (B) alleles (A/T) divided by the total count 
of major (A) (G/C) and minor (B) alleles [65]. Using the 
TuScan™ algorithm the average CNA of all cells within 
each sample was generated. Genes with 70% or greater 
overlap in copy number aberrant regions were classified as 
being altered. Copy number gains greater than seven and 
homozygous losses were considered potentially clinically 
significant, as is standard in clinical tumor testing, and 
included in analyses.

Data analysis

Patients were classified into one of two cohorts: 
(1) resistant or (2) non-resistant using the phenotyping 
methods described above. Descriptive statistics were used 
to summarize demographic and clinical characteristics of 
patients included. Means, standard deviations and ranges 
were calculated for continuous variables, and frequencies 
and percentages were generated for categorical variables. 
As a conservative approach and where applicable, non-
parametric statistical tests were implemented to avoid 
assuming the data was normally distributed. Demographic 
and clinical characteristic comparisons between resistant 
and non-resistant patients were performed using two-
tailed Fisher’s exact tests for categorical variables and 
the Mann-Whitney U test for continuous variables. 
Batch effects between the two sequencing methods and 
differences between tumor types were detected using 
a two-tailed Fisher’s exact test and, when comparing 
between sequencing platforms, mutated genes with 
an FDR-corrected p-value < 0.05 were excluded from 

further analyses. The two-tailed Fisher’s exact test 
was used to test the statistical significance of mutated 
candidate genes identified in resistant and non-resistant 
patients. An FDR-corrected p-value < 0.1 was considered 
statistically significant, and an uncorrected p-value < 0.1 
was significant for exploratory associations. Cytoscape 
(v.3.4.0) Enrichment Map [66] was utilized to conduct 
gene set enrichment of top gene hits, and the Genomics in 
Drug Sensitivity in Cancer database [67] was utilized to 
explore in vivo-derived predictions of sensitivity to multi-
targeted TKIs based on mutation status of the top hits.

For CNA analysis, copy number gains and losses 
were grouped. Presence of copy number aberrations 
between resistant and non-resistant individuals were 
arranged in contingency tables and analyzed using a two-
sided Fisher's exact test. FDR-corrected p-values < 0.1 
were considered statistically significant, and a threshold of 
FDR-corrected p < 0.3 was used for exploratory analysis 
[68, 69]. Cytoscape (v.3.4.0) Enrichment Map [66] was 
utilized to conduct gene set enrichment of top gene hits.

Statistical analysis was conducted using the open-
source, statistical programming language, R (version 3.3.2) 
[70]. CNA and WES data were combined to build a model 
leveraging both technologies. CNAs were annotated as 1, 
0, -1 for gain, no change, or loss, respectively, based on 
the criteria described above. Subjects with >20% missing 
data and genes with >5% missing data were excluded from 
further analysis. Remaining missing genes were imputed 
using the mean of the study cohort. Subsequently, feature 
reduction, via a random forest model was constructed 
using 2000 trees and 12 features at each split [71]. CNA 
and WES features with a mean decrease in Gini score 
>0.2, as determined using the elbow method, were selected 
for inclusion in the decision tree classification model using 
recursive partitioning trees [72]. Figures were generated 
using R (version 3.3.2) and GraphPad Prism 6.
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