13 research outputs found

    Flooding Hazard and Vulnerability. An Interdisciplinary Experimental Approach for the Study of the 2016 West Virginia Floods

    Get PDF
    The hydrosocial (HS) and social-hydro (SH) frameworks each attempt to understand the complexity of water and society, but they have emerged from historically disparate fields with distinctly different goals as well as methodological and epistemological standpoints. This paper encapsulates the shared experiences of two human geographers and two hydrologists studying hazard and vulnerability in two communities impacted by extreme flooding in West Virginia in 2016. We add to the limited examples of scientists working across epistemologies to improve the understanding of water-societal relations. In so doing, we also contribute to broader discussions of water justice. We outline an experimental approach connecting hydrosocial and social-hydro frameworks to study flood hazard and vulnerability. Within our conceptualization, we set forth that while social and hydrological factors can be presented as purely anthropogenic or geophysical, respectively, their intersection is the crux to investigate. The relationships between variables of both major categories can help us understand how the social and biophysical systems are interrelated. We depart from 21 semi structured interviews and a secondary analysis of local biophysical factors to develop a model that could show the relations between social and biophysical factors. Linking these factors is crucial step toward integration of SH and HS approaches to create a more comprehensive understanding of water-human relations. These studies can inform policymakers by highlighting where negative connections can be remedied and positive connections can be fostered to emphasize water justice

    Fluid Waters and Rigid Livelihoods in the Okavango Delta of Botswana

    No full text
    Current and future impacts of climate change include increasing variability in a number of biophysical processes, such as temperature, precipitation, and flooding. The Intergovernmental Panel on Climate Change (IPCC) has suggested that Southern Africa is particularly vulnerable to the anticipated impacts from global climate change and that social and ecological systems in the region will be disrupted and likely transformed in future decades. This article engages with current research within geography and cognate disciplines on the possibilities for responsive livelihoods within socio-ecological systems experiencing biophysical change. The paper draws from an ongoing research project that is evaluating perceptions of environmental change, specifically of precipitation and flooding dynamics, in order to understand social responses. We report on the findings from qualitative interviewing conducted in 2010 and 2011 in the communities of Etsha 1, Etsha 6, and Etsha 13 within the Okavango Delta of Botswana. While flooding and precipitation patterns have been dynamic and spatially differentiated, some livelihood systems have proven rigid in their capacity to enable adaptive responses. We assert this demonstrates the need for detailed research on livelihood dynamics to support adjustments to biophysical variability within socio-ecological systems experiencing change
    corecore