558 research outputs found

    Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles

    Full text link
    An improved micro-SQUID technique is presented allowing us to measure the temperature dependence of the magnetisation switching fields of single nanoparticles well above the critical superconducting temperature of the SQUID. Our first measurements on 3 nm cobalt nanoparticle embedded in a niobium matrix are compared to the Neel Brown model describing the magnetisation reversal by thermal activation over a single anisotropy barrier.Comment: 3 pages, 4 figures; conference proceeding: 1st Joint European Magnetic Symposia (JEMS'01), Grenoble (France), 28th August - 1st September, 200

    Critical connectedness of thin arithmetical discrete planes

    Full text link
    An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 22-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the smallest entry to the other ones. We provide a characterization of the discrete planes with critical thickness that have zero intercept and that are 22-connected. Our tools rely on the notion of dual substitution which is a geometric version of the usual notion of substitution acting on words. We associate with the fully subtractive algorithm a set of substitutions whose incidence matrix is provided by the matrices of the algorithm, and prove that their geometric counterparts generate arithmetic discrete planes.Comment: 18 pages, v2 includes several corrections and is a long version of the DGCI extended abstrac

    Étude de l'activité phosphatasique particulaire au sein d'un écosystème pollué : le port de Toulon

    Get PDF
    L'activité phosphatasique a été mesurée sur le matériel particulaire obtenu par filtration d'eau de mer sur des membranes de 90 µm, 5 µm et 0,25 µm de vide de maille, de décembre 1999 à mars 2000. Le substrat utilisé est du paranitrophénylphosphate (pNPP) dissous dans l'eau de mer. Dans ces conditions, deux types d'activités, à faible et à forte affinités, ont été caractérisés pour chaque classe de taille. La contribution de la classe de taille comprise entre 0,25 et 5 µm à l'ensemble de l'activité a été la plus faible des trois fractions, alors que celle de la classe de taille supérieure à 90 µm a souvent été la plus forte. Des activités associées à la présence de bactéries ont été mises en évidence sur les fractions zooplanctonique et phytoplanctonique. Toutefois, celles-ci n'ont pu rendre compte de la totalité des activités mesurées, en particulier pour le zooplancton.Phosphatase activity was estimated on particulate material resulting from filtration of sea water on 90, 5 and 0.25 µm membranes, from December 1999 to March 2000 in Toulon seaport. Para-nitrophenylphosphate (pNPP) dissolved in seawater was used as substrate. In these conditions, activities with low and high affinities were disclosed on each size class. The contribution of the 0.25-5 µm fraction was low, whereas the activity of the size class superior to 90 µm was elevated. Enzyme activities of fixed bacteria were characterized in the zooplanktonic and phytoplanktonic fractions. However, they cannot explain the totality of the measured activities in particular for zooplankton

    Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies

    Full text link
    We develop a model for ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies. This model applies to (i) magnetic materials with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with effective core and surface anisotropies; We numerically compute the resonance frequency as a function of the field and the resonance field as a function of the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial anisotropy. We also provide some approximate analytical expressions in the case of weak cubic anisotropy. We propose a method that uses these expressions for estimating the uniaxial and cubic anisotropy constants, and for determining the relative orientation of the cubic anisotropy axes with respect to the crystal principle axes. This method is applicable to the analysis of experimental data of resonance type measurements for which we give a worked example of an iron thin film with mixed anisotropy.Comment: 7 pages, 3 figure

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Magnetic Anisotropy of a Single Cobalt Nanoparticle

    Full text link
    Using a new microSQUID set-up, we investigate magnetic anisotropy in a single 1000-atoms cobalt cluster. This system opens new fields in the characterization and the understanding of the origin of magnetic anisotropy in such nanoparticles. For this purpose, we report three-dimensional switching field measurements performed on a 3 nm cobalt cluster embedded in a niobium matrix. We are able to separate the different magnetic anisotropy contributions and evidence the dominating role of the cluster surface.Comment: 4 pages, 8 figure

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure
    • …
    corecore