386 research outputs found

    Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks : results from an atmosphere-ocean general circulation model

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 2099-2120, doi:10.5194/bg-6-2099-2009Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO2 predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO2 emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO2 concentration and associated anthropogenic climate change will be reduced as additional climate models introduce carbon-nitrogen cycle interactions in their land components.This work was supported in part by NASA Earth Science Enterprise, Terrestrial Ecology Program, grant #W19,953 to P. E. Thornton. Support was provided by the National Center for Atmospheric Research (NCAR) through the NCAR Community Climate System Modeling program, and through the NCAR Biogeosciences program. Additional support was provided by the US Department of Energy, Office of Science, Office of Biological and Environmental Research. I. Fung, S. Doney, N. Mahowald, and J. Randerson acknowledge support from National Science Foundation, Atmospheric Sciences Division, through the Carbon and Water Initiative

    The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide

    Get PDF
    We characterized decadal changes in the amplitude and shape of the seasonal cycle of atmospheric CO_2 with three kinds of analysis. First, we calculated the trends in the seasonal cycle of measured atmospheric CO_2 at observation stations in the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory network. Second, we assessed the impact of terrestrial ecosystems in various localities on the mean seasonal cycle of CO_2 at observation stations using the Carnegie‐Ames‐Stanford Approach terrestrial biosphere model and the Goddard Institute for Space Studies (GISS) atmospheric tracer transport model. Third, we used the GISS tracer model to quantify the contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric CO_2 for the period 1961–1990, specifically examining the effects of biomass burning, emissions from fossil fuel combustion, and regional increases in net primary production (NPP). Our analysis supports results from previous studies that indicate a significant positive increase in the amplitude of the seasonal cycle of CO_2 at Arctic and subarctic observation stations. For stations north of 55°N the amplitude increased at a mean rate of 0.66% yr^(−1) from 1981 to 1995. From the analysis of ecosystem impacts on the mean seasonal cycle we find that tundra, boreal forest, and other northern ecosystems are responsible for most of the seasonal variation in CO_2 at stations north of 55°N. The effects of tropical biomass burning on trends in the seasonal cycle are minimal at these stations, probably because of strong vertical convection in equatorial regions. From 1981 to 1990, fossil fuel emissions contributed a trend of 0.20% yr^(−1) to the seasonal cycle amplitude at Mauna Loa and less than 0.10% yr^(−1) at stations north of 55°N. To match the observed amplitude increases at Arctic and subarctic stations with NPP increases, we find that north of 30°N a 1.7 Pg C yr^(−1) terrestrial sink would be required. In contrast, over regions south of 30°N, even large NPP increases and accompanying terrestrial sinks would be insufficient to account for the increase in high‐latitude amplitudes

    Formation of Super-Earths

    Full text link
    Super-Earths are the most abundant planets known to date and are characterized by having sizes between that of Earth and Neptune, typical orbital periods of less than 100 days and gaseous envelopes that are often massive enough to significantly contribute to the planet's overall radius. Furthermore, super-Earths regularly appear in tightly-packed multiple-planet systems, but resonant configurations in such systems are rare. This chapters summarizes current super-Earth formation theories. It starts from the formation of rocky cores and subsequent accretion of gaseous envelopes. We follow the thermal evolution of newly formed super-Earths and discuss their atmospheric mass loss due to disk dispersal, photoevaporation, core-cooling and collisions. We conclude with a comparison of observations and theoretical predictions, highlighting that even super-Earths that appear as barren rocky cores today likely formed with primordial hydrogen and helium envelopes and discuss some paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Ed

    Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB1006, doi:10.1029/2005GB002557.Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (KP1202030) to J. K. B and by NSFATM-9987457 to I. F. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under contract DE-AC03-76SF00098

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix
    • 

    corecore