12 research outputs found

    Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize

    Get PDF
    Maize, a staple food in many African countries including Kenya, is often contaminated by toxic and carcinogenic fungal secondary metabolites such as aflatoxins and fumonisins. This study evaluated the potential use of a low-cost, multi-spectral sorter in identification and removal of aflatoxin- and fumonisin-contaminated single kernels from a bulk of mature maize kernels. The machine was calibrated by building a mathematical model relating reflectance at nine distinct wavelengths (470–1550\ua0nm) to mycotoxin levels of single kernels collected from small-scale maize traders in open-air markets and from inoculated maize field trials in Eastern Kenya. Due to the expected skewed distribution of mycotoxin contamination, visual assessment of putative risk factors such as discoloration, moldiness, breakage, and fluorescence under ultra-violet light (365\ua0nm), was used to enrich for mycotoxin-positive kernels used for calibration. Discriminant analysis calibration using both infrared and visible spectra achieved 77% sensitivity and 83% specificity to identify kernels with aflatoxin >10\ua0ng\ua0g and fumonisin >1000\ua0ng\ua0g, respectively (measured by ELISA or UHPLC). In subsequent sorting of 46 market maize samples previously tested for mycotoxins, 0–25% of sample mass was rejected from samples that previously tested toxin-positive and 0–1% was rejected for previously toxin-negative samples. In most cases where mycotoxins were detected in sorted maize streams, accepted maize had lower mycotoxin levels than the rejected maize (21/25 accepted maize streams had lower aflatoxin than rejected streams, 25/27 accepted maize streams had lower fumonisin than rejected streams). Reduction was statistically significant (p\ua

    Phytosanitary and Technical Quality Challenges in Export Fresh Vegetables and Strategies to Compliance with Market Requirements: Case of Smallholder Snap Beans in Kenya

    No full text
    Kenya is one of the leading exporters of snap beans (Phaseolus vulgaris) to Europe, but the export volume has remained below potential mainly due to failure to meet the market quality standards. The quality concerns include the presence of regulated and quarantine pests, pesticide residues, harmful organisms, and noncompliance with the technical standards. These challenges call for the development of alternative approaches in overcoming the phytosanitary and quality challenges in the export of snap beans and other fresh vegetables. These may include integrated pest management (IPM) approaches that incorporate non synthetic chemical options, such as diversified cropping systems, plant and microbial-based pesticides, varieties with multiple disease and pest resistance, insecticidal soaps, pheromones and kairomones, entomopathogens and predators. These approaches, coupled with capacity-building and adherence to the set quality standards, will improve compliance with export market requirements. The aim of this paper is to increase knowledge on implementing good practices across the value chain of fresh vegetables that would lead to improved quality and thereby meeting institutional requirements for the export market. The novelty of the current review is using snap beans as a model vegetable to discuss the challenges that must be mitigated for the quest of achieving high quality and increased volume of fresh export products. Whilst many of the publications have focused on alternatives to synthetic pesticides in addressing MRLs in fresh vegetable exports, there is a disconnect between research and industry in achieving chemical residue and pest free export vegetables. This review describes the phytosanitary and technical challenges faced by smallholder farmers in accessing export markets, evaluates the phytosanitary and quality requirements by the niche markets, and explores the strategies that could be used to enhance compliance to the institutional and market requirements for fresh vegetables

    Improving Access to Export Market for Fresh Vegetables through Reduction of Phytosanitary and Pesticide Residue Constraints

    No full text
    The horticultural sector is a key contributor to Kenya’s gross domestic product through the export of fresh-cut flowers, fruits and vegetables to various niche markets. It employs over 350,000 people, while about six million depend on it. However, the sector is constrained by the strict technical and phytosanitary quality requirements set by the export markets. The phytosanitary concerns include the presence of pests and microbial contaminants, while the presence of chemical residues constitute the major technical challenge. These constraints cause the interception and rejection of produce at the export destinations. The fresh produce should be free of quarantine and regulated non-quarantine pests, pest damage, pesticides above the stipulated maximum residue levels (MRLs) and phytosanitary certification. This review discusses the following four-tiered approach to compliance with phytosanitary and pesticide residue requirements: (i) use of alternative pest management approaches, including biocontrol options, cultural and physical practices; (ii) collaboration among regulatory agencies, institutions, producers and regional countries in the enforcement of standards; (iii) investment in research and the adoption of innovative technologies; (iv) awareness creation and training of actors along the fresh vegetable value chain. It is envisaged that this approach will contribute to sustainable fresh vegetable value chains, leading to improved access to export markets, and increased export volumes and income to smallholder farmers and other actors in the fresh vegetable value chain

    Disease surveillance and farmers’ knowledge of Brachiaria (Syn. Urochloa) grass diseases in Rwanda

    No full text
    Brachiaria (syn. Urochloa) is one of the most important tropical forages grass of African origin. Its performance is affected by different constraints, including diseases. This study assessed the distribution, incidence and severity of Brachiaria diseases and documented farmers’ knowledge on Brachiaria diseases in Rwanda. Surveys were conducted in five districts in the dry and wet seasons of 2018 and 2019. Fungi associated with major diseases were isolated and identified based on internal transcribed spacer sequences. The demographic information and farmers’ knowledge of Brachiaria diseases and yield loss were collected using structured questionnaire. Surveys revealed widespread distribution of leaf blight, leaf rust and leaf spot diseases in Rwanda. Incidence and severity of these diseases differed significantly by districts, seasons and district × season interactions; the exception was the non-significant effect of season and district × season interactions on rust incidence in 2018. Molecular identification revealed Phakopsora apoda as a provisional leaf rust pathogen, and frequent association of fungi Epicoccum spp. and Nigrospora spp. with leaf blight, and Bipolaris secalis and Fusarium spp. with leaf spot symptoms. This study provides baseline information for future studies on Brachiaria diseases and recognises diseases as a major challenge to sustainable production of Brachiaria grass in Rwanda and East Africa

    Assessing Sensory Characteristics and Consumer Preference of Legume-Cereal-Root Based Porridges in Nandi County

    No full text
    Previously, porridge has been cereal based, consumed as a beverage or weaning food. Malnutrition among children has necessitated inclusion of legumes and roots in an effort to boost nutrient density. Therefore, the current study aimed at identifying the most acceptable porridge based on different food ingredient combination. Composite porridge flour included legumes (soybean, groundnut, and lablab), cereals (finger millet, sorghum, maize, and wheat), pseudocereals (pumpkin seed, buckwheat, and amaranth seed), and roots (cassava and arrowroot). New composite porridge flours were formulated using Nutrisurvey linear programming software. Different composite flours formulated to target either school-going children or a family setup were subjected to sensory analysis and the consumer preference test. Eight new formulations were developed. Buckwheat, wheat, and arrowroot were eliminated, maize and lablab content (%) were reduced, and cassava and finger were increased in the new formulations. A total of 149 participants composed of men (30.9%) and women (69.1%) aged between 11 and >60 yrs were interviewed. Newly formulated porridges were more preferred to the previous porridge formulations on color (40–54.2%), smell (40–52.4%), taste (41.5–47.5%), texture (58.3%), viscosity (35.4–45.8%), and overall acceptability (35–54.2%). The most cited reason for liking or disliking a particular porridge was taste (38.9%) and texture (32.2%), respectively. However, all the sensory attributes positively correlated with overall acceptability. Increased finger millet and cassava proportions in the newly formulated composite porridge flour highly influenced their high acceptability. Thus, consumer acceptability of new products is key for their adoption

    Occurrence and management of two emerging soil-dwelling pests ravaging cabbage and onions in Kenya

    No full text
    Abstract Cabbage and Onion production in sub-Saharan Africa face numerous pest constraints that needs to be overcome to feed the rapidly growing population. This study aimed to establish the occurrence, incidence, and severity of soil-dwelling pests of cabbage and onions, and current management practices in five Counties of Kenya. Our findings revealed that most farmers grew hybrid vegetables on a small scale, which were highly dominated by various pest species (Delia platura, Maladera sp., and Agriotes sp. for cabbage and Atherigona orientalis and Urophorus humeralis for onion. The occurrence, incidence and severity of the various pest species on both crops varied considerably. Over 95% of the farmers relied on synthetic insecticides, which were applied weekly or bimonthly with limited success. Our findings demonstrate that invasive and polyphagous A. orientalis and D. platura were the most devastating pests of onion and cabbage without effective control options. Therefore, effective, sustainable, and affordable management strategies are required to control the spread of these pests to other crops in the region

    Multispectral Sorting Based on Visibly High-Risk Kernels Sourced from Another Country Reduces Fumonisin and Toxigenic Fusarium on Maize Kernels

    No full text
    Fusarium species infect maize crops leading to the production of fumonisin by their toxigenic members. Elimination of microbes is critical in mitigating further postharvest spoilage and toxin accumulation. The current study investigates the efficacy of a previously described multispectral sorting technique to analyze the reduction of fumonisin and toxigenic Fusarium species found contaminating maize kernels in Kenya. Maize samples (n = 99) were collected from six mycotoxin hotspot counties in Kenya (Embu, Meru, Tharaka Nithi, Machakos, Makueni, and Kitui County) and analyzed for aflatoxin and fumonisin using commercial ELISA kits. Aflatoxin levels in majority (91%) of the samples were below the 10 ng/g threshold set by the Kenya Bureau of Standards and therefore not studied further. The 23/99 samples that had >2,000 ng/g of fumonisin were selected for sorting. The sorter was calibrated using kernels sourced from Ghana to reject visibly high-risk kernels for fumonisin contamination using reflectance at nine distinct wavelengths (470–1,550 nm). Accepted and rejected streams were tested for fumonisin using ELISA, and the presence of toxigenic Fusarium using qPCR. After sorting, there was a significant (p < 0.001) reduction of fumonisin, by an average of 1.8 log ng/g (98%) and ranging between 0.14 and 2.7 log ng/g reduction (28–99.8%) with a median mass rejection rate of 1.9% (ranged 0% to 48%). The fumonisin rejection rate ranged between 0 and 99.8% with a median of 77%. There was also a significant reduction (p = 0.005) in the proportion of DNA represented by toxigenic Fusarium, from a mean of 30–1.4%. This study demonstrates the use of multispectral sorting as a potential postharvest intervention tool for the reduction of Fusarium species and preformed fumonisin. The spectral sorting approach of this study suggests that classification algorithms based on high-risk visual features associated with mycotoxin can be applied across different sources of maize to reduce fumonisin
    corecore