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Abstract 30 

Maize, a staple food in many African countries including Kenya, is often contaminated by toxic and 31 

carcinogenic fungal secondary metabolites such as aflatoxins and fumonisins. This study evaluated the 32 

potential use of a low-cost, multi-spectral sorter in identification and removal of aflatoxin- and 33 

fumonisin-contaminated single kernels from a bulk of mature maize kernels. The machine was calibrated 34 

by building a mathematical model relating reflectance at nine distinct wavelengths (470-1,550 nm) to 35 

mycotoxin levels of single kernels collected from small-scale maize traders in open-air markets and from 36 

inoculated maize field trials in Eastern Kenya. Due to the expected skewed distribution of mycotoxin 37 

contamination, visual assessment of putative risk factors such as discoloration, moldiness, breakage, and 38 

fluorescence under ultra-violet light (365 nm), was used to enrich for mycotoxin-positive kernels used 39 

for calibration. Discriminant analysis calibration using both infrared and visible spectra achieved 77% 40 

sensitivity and 83% specificity to identify kernels with aflatoxin > 10 ng g-1 and fumonisin > 1,000 ng g-1, 41 

respectively (measured by ELISA or UHPLC). In subsequent sorting of 46 market maize samples 42 

previously tested for mycotoxins, 0-25% of sample mass was rejected from samples that previously 43 

tested toxin-positive and 0-1% was rejected for previously toxin-negative samples. In most cases where 44 

mycotoxins were detected in sorted maize streams, accepted maize had lower mycotoxin levels than the 45 

rejected maize (21/25 accepted maize streams had lower aflatoxin than rejected streams, 25/27 46 

accepted maize streams had lower fumonisin than rejected streams). Reduction was statistically 47 

significant (p<0.001), achieving an 83% mean reduction in each toxin. With further development, this 48 

technology could be used to sort maize at local hammer mills to reduce human mycotoxin exposure in 49 

Kenya, and elsewhere in the world, while at once reducing food loss, and improving food safety and 50 

nutritional status. 51 

Key words: aflatoxin, fumonisin, maize, spectral sorting, food safety  52 
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1. Introduction  53 

Mycotoxins are toxic secondary metabolites of fungi that contaminate food crops such as cereals 54 

and nuts globally (Wild & Gong, 2010). The best-studied are aflatoxins, to which more than 5 billion 55 

people in developing countries are chronically exposed through food (Wild & Gong, 2010; Wu, Narrod, 56 

Tiongco, & Liu, 2011). Acute exposure to high levels of aflatoxin causes potentially fatal aflatoxicosis 57 

(Nyikal et al., 2004) and chronic exposure to naturally-occurring aflatoxins causes liver cancer (IARC, 58 

2012). The mycotoxin fumonisin frequently co-occurs with aflatoxin in maize (Magoha et al., 2014; 59 

Mutiga et al., 2014; Mutiga, Hoffmann, Harvey, Milgroom, & Nelson, 2015; Torres et al., 2014; Wild & 60 

Gong, 2010) and chronic exposure has been associated with esophageal cancer and neural tube defects 61 

(Wild & Gong, 2010). Additionally, exposure to both mycotoxins is correlated with childhood stunting 62 

(Khlangwiset, Shephard, & Wu, 2011; Shirima et al., 2015; Wu, Groopman, & Pestka, 2014), possibly by 63 

inducing environmental enteropathy, an intestinal condition that leads to reduced absorption of 64 

nutrients (Smith, Stoltzfus, & Prendergast, 2012).  65 

The Kenyan maize value chain, dominated by self-provisioning, purchase from open-air markets, 66 

and local milling (Hellin & Kimenju, 2009; Kang'ethe, 2011), is unable to protect consumers from 67 

foodborne exposure to mycotoxins. Aflatoxin and fumonisin are endemic in household maize supplies in 68 

Kenya (Hoffmann, Mutiga, Harvey, Nelson, & Milgroom, 2013a; Mutiga et al., 2014; Mutiga et al., 2015). 69 

Maize brought by Kenyans for local milling showed contamination above Kenyan regulatory limits of 10 70 

ng g-1 aflatoxin and 1,000 ng g-1 fumonisin in 39% and 37% of samples, respectively (Mutiga et al., 2014). 71 

Further, Eastern Kenya region has repeatedly been host to acute aflatoxicosis outbreaks shortly after the 72 

major maize harvest, including a severe outbreak in 2004 in which 125 Kenyans died (Daniel et al., 2011; 73 

Nyikal et al., 2004).  74 

The focus of this study was to adapt a relatively-simple, multi-spectral sorter to reduce aflatoxin 75 

and fumonisin contamination in Kenyan maize.  Such a device could be part of an integrated approach to 76 

mycotoxin management that empowers consumers to personally ensure food safety. Sorting exploits 77 

the fact that mycotoxin distribution is generally highly skewed: a relatively small proportion of kernels 78 

contain the majority of the toxin (Kabak, Dobson, & Var, 2006). For food-insecure populations, sorting 79 

could directly improve food security by removing the few highly-contaminated kernels in a grain lot, 80 

while retaining the majority of the healthy grain for consumption. Sorting at the individual consumer 81 

level could also help overcome the problem of misaligned incentives for mycotoxin control between 82 

producers, who often bear the costs but not the benefits of pre- and post-harvest interventions, and 83 

consumers, who are less able to demand control since the toxins are generally undetectable by human 84 

consumers (Hoffmann, Mutiga, Harvey, Nelson, & Milgroom, 2013b). This approach would represent an 85 

improvement over ineffective test-and-reject strategies that reduce an already marginal food supply, 86 

such as when 2.3 million bags of maize were condemned by the Kenyan government in 2010 due to 87 

aflatoxin contamination, and much of the contaminated maize may have been illicitly returned to the 88 

market (Ng’erich & Gathura, 2010).  89 

Existing sorting methods to remove aflatoxins and fumonisins from maize have been summarized 90 

in larger reviews focusing on mycotoxin reduction in grains (Grenier, Loureiro-Bracarense, Leslie, & 91 

Oswald, 2013), aflatoxin detection and quantification (Yao, Hruska, & Di Mavungu, 2015), and non-92 

biological aflatoxin remediation (Womack, Brown, & Sparks, 2014).  The last review includes a table of 93 

existing applications of hand-sorting, infrared spectrometry, and ultraviolet fluorescence to the 94 
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reduction of aflatoxin in tree nuts, peanuts, and maize. Low-cost spectral-sorting, such as developed in 95 

this study, was not represented.  Two general approaches to sorting for mycotoxin reduction exist: 96 

sorting to remove low-quality kernels in general or sorting by algorithms calibrated to remove 97 

mycotoxin contaminated kernels specifically.   98 

Sorting to remove low-quality, possibly fungal-infected, grains in general, which can be achieved 99 

through sieving, density separation, and removal of discolored kernels (Grenier et al., 2013). To improve 100 

maize quality, Kenyan consumers often manually sort maize using large sieve tables prior to local milling, 101 

which can be effective at reducing levels of fumonisin but may have little effect on aflatoxin levels 102 

(Mutiga et al., 2014). Alternatively traditional processing though sorting, winnowing, and washing has 103 

been shown to reduce aflatoxin and fumonisins in traditional food products in Benin (Fandohan et al., 104 

2006; Fandohan et al., 2005). We would put into this category the ‘black light’ or Bright Greenish Yellow 105 

Fluorescence (BGYF) test (Grenier et al., 2013), where kernels are viewed under 365 nm ultraviolet light 106 

for fluorescence characteristic of A. flavus infection, specifically fluorescence of peroxidase transformed 107 

kojic acid.   108 

Recently developed approaches use some combination of infrared, visible, and ultraviolet light 109 

imaging calibrated to detect maize kernels known to be contaminated with aflatoxin or fumonisin.  110 

Hyperspectral imaging of ultraviolet light fluorescence can classify kernels as having undetectable, low, 111 

medium, or high aflatoxin contamination (bins of < 1, 1-20, 20-100, or > 100 ng g-1 aflatoxin, (Yao et al., 112 

2010).  Combining visible and near-infrared transmittance or reflectance spectra can classify maize by 113 

aflatoxin level (Pearson, Wicklow, Maghirang, Xie, & Dowell, 2001).  Implementing this approach in high-114 

speed sorting has been shown to reduce both aflatoxin and fumonisin contamination in maize from 115 

Texas, USA by over 80% (Pearson, Wicklow, & Pasikatan, 2004).  While modern imaging approaches are 116 

effective, there is a need for improved sorting technology designed for lower-resource markets in which 117 

small samples are processed.  118 

In this study, we calibrated a laboratory-scale, multi-spectral sorter (Haff, Pearson, & Maghirang, 119 

2013) to remove aflatoxin- and fumonisin-contaminated kernels from diverse maize samples. Samples 120 

included maize purchased from open-air markets in Eastern Kenya and kernels from a field trial of 121 

Aspergillus flavus-inoculated maize. We chose to evaluate this specific sorting technology because the 122 

basic circuitry is relatively inexpensive (<US$100 in components), and throughput is modest (20 123 

kernels/s, theoretically around 25 kg/h), providing an opportunity to adapt the design for application in 124 

small-scale milling in developing countries such as Kenya. 125 

We tested the major hypothesis that mycotoxin levels in market maize can be significantly 126 

reduced by removing the kernels contaminated at the highest levels using a relatively simple optical 127 

sorting technology.  In the process of testing this hypothesis, we also generated data on the skewed 128 

distribution of and risk factors for aflatoxin or fumonisin contamination at the single-kernel level.  129 

2. Materials and Methods 130 

This study focused on calibrating an existing single-kernel optical sorter for the purpose of 131 

removing aflatoxin and fumonisn contaminated kernels from bulk samples of Kenyan market maize.  To 132 

develop the calibration algorithms, we sourced single kernels from two concurrent mycotoxin-related 133 

studies in Kenya.  Given prior knowledge that aflatoxin (Lee, Lillehoj, & Kwolek, 1980; Turner et al., 134 

2013) and fumonisin (Mogensen et al., 2011) contamination in single-kernels is skewed, we expected 135 
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aflatoxin and fumonisn contamination in our samples to also be skewed towards few individual kernels 136 

being contaminated.  If we analyzed a simple random sampling of kernels from these studies, we 137 

anticipated we would not analyze sufficient contaminated kernels to develop a statistically robust 138 

calibration.  Therefore, we employed multiple stages of sample selection designed to enrich for toxin-139 

contaminated kernels in the final data set.  A summary of the kernel selection process is summarized in 140 

Table 1 along with the critical analytical methods applied to each sample subset.   141 

2.1 Bulk maize samples.  142 

Samples of shelled maize kernels were obtained from two mycotoxin-related studies in Kenya. 143 

The first source was a survey of shelled maize purchased in < 1 kg lots from open-air markets in Meru, 144 

Machakos, and Kitui counties of Eastern Kenya , comprising 204 unique samples in total (Eliphus, 2014). 145 

Some samples were locally dehulled. The second source was shelled maize collected immediately after 146 

harvesting ears previously inoculated with an aflatoxin-producing strain of A. flavus. Kernels from 17 147 

highly aflatoxin-contaminated bulk samples were selected for ultra-high performance liquid 148 

chromatography (UHPLC) analysis for aflatoxin levels (Falade et al., 2014).  149 

2.2 Selection, enrichment, and visual characterization of maize kernels.  150 

Maize samples from the two studies were selected, enriched, and characterized separately. 151 

Individual kernels from the market survey were enriched for mycotoxin prevalence by selecting, first, 152 

contaminated bulk samples and, second, kernels within those samples that exhibited fluorescence under 153 

ultraviolet (UV) light.  A total of 25 bulk samples were randomly selected from the population of all bulk 154 

samples for which 5-g subsamples had previously tested above 10 ng g-1 aflatoxin or 1,000 ng g-1 155 

fumonisin. Kernels from these samples were visualized under 365 nm light for bright greenish-yellow 156 

fluorescence (BGYF) or bright orange fluorescence (BOF) (Pearson, Wicklow, & Brabec, 2010). All kernels 157 

that fluoresced, and three that did not, were selected for further analysis. In total, 233 kernels were 158 

selected from the 25 samples. Kernels were visually inspected for three factors previously associated 159 

with aflatoxin or fumonisin contamination: breakage (Mutiga et al., 2014), insect damage (Pearson et al., 160 

2010), and discoloration (Pearson et al., 2010). An additional factor, mass in the lower 10th percentile of 161 

the set, was calculated during risk factor analysis because aflatoxin-contaminated maize kernels have 162 

lower average mass than uncontaminated kernels from the same ear (Lee et al., 1980).  163 

Individual kernels from the A. flavus inoculated field trials were selected at random from 17 164 

aflatoxin-contaminated bulk samples: ten kernels each from the first 12 samples, and 20 kernels each 165 

from the second five samples (Falade et al., 2014). The first set of 120 kernels were available for visual 166 

assessment of all the same risk factors as the market samples, except that both BGYF and BOF were 167 

aggregated as fluorescence under UV. 168 

2.3 Single kernel spectroscopy.
 
 169 

Limited-spectra collection. Individual kernels from both the market survey (n=233) and the field 170 

trials (n=220) were scanned by passing through the sorter three times. During operation of the sorter, a 171 

single stream of kernels fell past a circuit board that cycled through a ring of light-emitting diodes (LEDs) 172 

with 9 distinct emission wavelengths; reflectance from each of the 9 individual LEDs was captured by a 173 

photodiode. If the machine was operating in sorting mode, calibrated software triggered removal of 174 
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contaminated kernels by a pulse of compressed air. To mimic the orientation differences that would 175 

occur in real-time sorting, individual kernels were allowed to fall through the sorter in random 176 

orientation.  177 

Two separate sorter circuit boards were used, each with distinct analytical ranges. The first was a 178 

low wavelength board (nirL) that used LEDs with peak emission wavelengths of 470 (blue), 527 (green), 179 

624 (red), 850, 880, 910, 940, 1070 nm. The second was a higher wavelength board (nirH) that used LEDs 180 

of 910, 940, 970, 1050, 1070, 1200, 1300, 1450, 1550 nm. Composite features (n=205 features) were 181 

calculated: bulk reflectance from each LED (reflectance minus background, n=9 features), total visible 182 

and total infrared reflectance (n=2), all pairwise differences (n=55), all pairwise ratios (n=55), and all 183 

second derivatives of the combination of three features (n=84). Hardware and software has been 184 

comprehensively described previously (Haff et al., 2013). 
 185 

High-resolution spectra collection. To inform future development of the limited-spectra sorting 186 

technology, Fourier transformed near infrared (FT-NIR) reflectance spectra from 800 to 2,780 nm in 187 

1,154 steps were captured, in duplicate, for each individual kernel (on a Multi-Purpose FT-NIR Analyzer; 188 

Bruker Optics Inc. Billerica, MA, USA). Each scan captured reflectance from one of the two broadest 189 

faces of each kernel.  190 

2.4 Mycotoxin analysis.  191 

In this study we analyzed all market maize kernels for aflatoxin and fumonisin levels using ELISA 192 

methods and also analyzed the inoculated field trial kernels for fumonisin.  The inoculated field trial 193 

kernels had been analyzed for aflatoxin by UHPLC in a parallel study (Falade et al., 2014).  194 

From the market maize survey, single kernels were selected for wet chemistry mycotoxin analysis 195 

in a two-tiered process. To maximize diversity among the spectra with associated wet chemistry, a 196 

principal components analysis was performed on the FT-NIR data. Eighty-one kernels were sampled 197 

across the first principal component, spanning all 22 markets. Subsequently  another 77 kernels were 198 

selected by stratified random sampling of kernels from the 22 markets. From the inoculated field trials, 199 

all 220 kernels selected for aflatoxin analysis in (Falade et al., 2014) were also subject to fumonisin 200 

analysis.  201 

Individual maize kernels were milled for 10 s at 30 Hz to a fine powder (< 1 mm particle size) in a 202 

ball mill with 5 mL stainless steel jars (MM301 mill, manufacturer jars; Retsch Haan, Germany). Between 203 

samples, jars were cleaned with absolute ethanol and wiped with a dry cloth. Kernels were assayed for 204 

total aflatoxin and fumonisin levels using toxin-specific ELISA kits (Total Aflatoxin ELISA Quantitative and 205 

Fumonisin ELISA Quantitative, respectively; Helica Biosystems Inc., Santa Ana, CA). The manufacturer’s 206 

protocol was followed with minor modifications to toxin extraction. To eliminate sub-sampling variation, 207 

mycotoxins were extracted from the entire ground maize kernel. Mycotoxins were extracted using 208 

standardized volumes of 80% methanol ranging from 400 to 1,500 µl according to initial kernel mass; 209 

extractions targeted a manufacturer recommended 1:5 nominal dilution. Aliquots of the same 210 

extractions were diluted 20-fold in 80% methanol for fumonisin ELISA. Samples with contamination 211 

above the highest ELISA standard were diluted and retested. Manufacturer performance data 212 

correlating results from Helica ELISA to HPLC analysis suggested only minor bias; the reported 213 

correlation implies that an ELISA measurement of aflatoxin = 10 or 100 ng g-1 and fumonisin = 1,000 or 214 
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10,000 ng g-1 would measure by HPLC as 9.4 or 95.5 ng g-1 aflatoxin or 1,020 or 9,360 ng g-1 fumonisin, 215 

respectively.  216 

Inoculated field trial kernels were assayed by UHPLC for aflatoxin levels for a parallel study 217 

(Falade et al., 2014). Briefly, toxins were extracted from the entire ground maize sample with 70% 218 

methanol. Extracts were assayed using a Phenomenex Synergi 2.5u Hydro – RP (100 mm x 3.00 mm) 219 

column at 3500 psi. Toxin was detected with excitation/emission wavelengths of 365/455 nm and peaks 220 

compared to standard curves of aflatoxin B1, B2, G1, and G2 for quantification. Total aflatoxin values for 221 

comparison to ELISA results were calculated by summing the individual aflatoxin quantities multiplied by 222 

the reported antibody cross-reactivity rates, as follows: B1 – 100%, B2 – 77%, G1 – 64%, and G2 - 25%. 223 

After UHPLC analysis for aflatoxin, extractions were passed to the fumonisin ELISA assay as described 224 

above.  225 

2.5 Statistical analysis of mycotoxins and kernel characteristics.  226 

The association between kernel characteristics and mycotoxin contamination was first evaluated 227 

with univariate statistics. Binary mycotoxin values of aflatoxin > 10 ng g-1 or fumonisin > 1,000 ng g-1 228 

were included as responses in a Chi-Square test, or a Fisher’s Exact test for sample sizes < five. 229 

Significant factors were included in multivariate logistic regression to predict the odds of aflatoxin or 230 

fumonisin contamination. Sample region (Meru, Machakos, and Kitui) was included as a covariate. The 231 

best model was identified based on a stepwise regression. All analyses were performed in R v.3.1.0 (R 232 

Core Team, 2014), separately for each mycotoxin. 233 

2.6 Sorting algorithm calibration and assessment.  234 

The linear discriminant analysis (LDA) software distributed with the sorter (Haff et al., 2013) was 235 

used to calibrate the sorter to detect single kernels with either aflatoxin > 1, 10, or 100 ng g-1 or 236 

fumonisin > 100, 1,000, or 10,000 ng g-1, in all dual-toxin pairs. For example, there was one calibration to 237 

identify kernels with aflatoxin > 10 ng g-1 or fumonisin > 1,000 ng g-1. This required nine separate 238 

calibrations for both the low (nirL) and high (nirH) wavelength circuit boards.  239 

To generate the calibrations, a training file was created by associating the mycotoxin levels with 240 

the first two of each individual-kernel spectra. A discriminant analysis exhaustive search selected three 241 

optical features that minimized overall classification error rate using the first scan for training and the 242 

second scan for cross-validation. The full data set was required for training. Cross-validation sensitivity 243 

(Sn, ntoxin positive kernels rejected / ntoxin positive kernels) and specificity (Sp, 1 – ntoxin negative kernels rejected / ntoxin negative kernels) 244 

were calculated.  245 

2.7 Alternative sorting algorithm assessment.
 
 246 

To evaluate the extent to which selected hardware or software limitations affected sorting 247 

performance, three separate limiting components were evaluated (i) the classification algorithm, (ii) the 248 

detector, and (iii) the LED emission wavelengths. While the default software used linear discriminant 249 

analysis for classification, random forest (RF) and support vector machine (SVM) algorithms were also 250 

evaluated in R (packages randomForest and kernlab, respectively). Classification performance was 251 

evaluated identically as for LDA.  252 
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Existing detector hardware required separate circuit boards to gather reflectance spectra 253 

wavelengths of either 470-1,070 nm (the nirL board) or 910-1,550 nm (the nirH board). To evaluate if 254 

this range limitation decreased performance, data for an in silico ‘composite’ board (nirHL) were 255 

calculated using all the features from all 14 unique LEDs present across both boards (four of the nine 256 

LEDs were present on both boards). The same set of optical features were calculated including ratios, 257 

differences, and second derivatives (n = 816 total features). This larger set of features was used for 258 

classification by LDA, RF, and SVM algorithms. Although limited spectra are more useful for high-259 

throughput sorting, we also evaluated the performance of higher-resolution spectral data, the FT-NIR 260 

data, using the RF and SVM algorithms for classification.  261 

2.8 Maize sorting validation.  262 

Market maize samples not used for selecting calibration kernels (n=46) were selected for physical 263 

sorting to validate the best classification algorithm. Samples were stratified by previous bulk analysis of 264 

maize by ELISA. Categories were ‘high fumonisin’ (> 1,000 ng g-1), ‘high aflatoxin’ (> 10 ng g-1), ‘medium 265 

aflatoxin’ (> 1 and < 10 ng g-1), ‘medium fumonisin’ (> 100 and < 1,000 ng g-1), and ‘control’ (no detected 266 

toxins). Whatever mass of the sample remained was sorted, up to a maximum of 75 g. To isolate the 267 

analytical accuracy of the machine, samples were sorted manually rather than mechanically (the air 268 

diversion was disabled). Kernels were dropped through the machine and software indicated if the kernel 269 

should be rejected or not (≤ threshold = accept; > threshold = reject). Manual sorting validated the 270 

theoretical performance of the multi-spectral sorting process, without noise from misclassification due 271 

to the mechanical errors (e.g. the air mechanism failing to divert the kernel). 272 

Rejection rates were calculated from the bulk mass of the accepted and rejected kernels and 273 

modeled with a linear model of the logit-transformed reject proportion by bulk aflatoxin and fumonisin 274 

detection status. The minimum non-zero rejection rate was added to all values to accommodate 275 

rejection rates of zero in the analysis (Warton & Hui, 2011). Accepted and rejected maize streams were 276 

ground and assayed by ELISA for aflatoxin and fumonisin levels. A general linear model of bulk toxin 277 

levels was used to test the effect of sorting as the change in toxin level in the accepted versus rejected 278 

stream, with blocking by sample. All samples without detectable toxin in both the accepted and rejected 279 

kernels were excluded as no sorting effect was observable.  280 

3. Results 281 

The goal of this study was to evaluate the potential for multi-spectral sorting to remove aflatoxin 282 

and fumonisin from Kenyan market maize as a proof of concept for maize in similar agricultural systems 283 

globally. To do so, we calibrated an existing laboratory-scale, multi-spectral sorting device to identify 284 

kernels contaminated with mycotoxins above thresholds of concern. Then, we used the device to sort 285 

samples of Kenyan market maize and show that toxin levels are reduced in maize accepted by the 286 

machine compared to maize rejected from the same sample.  To guide future improvements of the 287 

sorting technology, we then compared results to calibrations achievable using other classification 288 

algorithms and with higher-resolution spectral data.  Finally, we used this opportunity to assess the 289 

observed skewness of the distribution of mycotoxins in the single-kernels results and asses risk factors 290 

associated with single-kernel contamination.  291 
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3.1 Discriminant analysis can differentiate aflatoxin or fumonisn contaminated kernels from 292 

uncontaminated kernels.
 
 293 

Overall, we scanned and measured aflatoxin and fumonisin levels in 378 individual maize kernels 294 

from a market maize survey and A. flavus inoculated field trials; in total 158 and 54 kernels had 295 

measured aflatoxin > 10 ng g-1 or fumonisin > 1,000 ng g-1.  We associated measured mycotoxin levels 296 

with the spectral features for each kernel from circuit boards with lower range (470-1,070 nm, nirL) or 297 

higher range (910-1,550 nm, nirH) LEDs. Then we calibrated a linear discriminant analysis (LDA) 298 

algorithm to classify kernels based on various  mycotoxin thresholds.  299 

The discriminant analysis achieved a maximum cross-validation sensitivity (Sn) and specificity (Sp) 300 

of around 80% to reject kernels with mycotoxin levels at various thresholds (Fig. 2). As expected, 301 

classification performance showed a trade-off between increasing the true positive rate (Sn) and 302 

increasing the true negative rate (Sp), for a maximum of around 80% Sn and Sp when balancing both 303 

performance metrics. The lower wavelength board (nirL) showed a trend towards greater classification 304 

sensitivity and the higher wavelength board (nirH) showed a trend towards greater classification 305 

specificity. The in silico combination of the two boards (nirHL) did not dramatically improve classification 306 

relative to either existing board (nirL or nirH), as Sn and Sp values for each threshold fell within the 307 

range of values for the existing boards. Therefore, wavelength limitations of the existing hardware did 308 

not likely limit classification performance.  309 

The calibration chosen for sorting was the nirL board rejecting kernels with aflatoxin > 10 ng g-1 310 

and fumonisin > 1,000 ng g-1 (Sn = 0.77 and Sp = 0.83, Fig. 2). The next best calibration, also using the 311 

nirL board, lowers the fumonisin rejection threshold to 100 ng g-1 for Sn = 0.82 and Sp = 0.80. If it were 312 

physically possible, use of the nirHL board at the AF > 10 ng g-1 and FM > 100 ng g-1 thresholds would 313 

provide marginally better discrimination (Sn = 0.78 and Sp = 0.85). Both infrared and visible features 314 

were used in the 3-feature discriminant analyses at aflatoxin > 10 ng g-1 and fumonisin > 1,000 ng g-1 315 

thresholds (Table 3).  316 

3.2 Optical sorting reduces aflatoxin and fumonisin in accepted maize. 317 

 For a direct test of the potential for optical sorting to reduce mycotoxin levels, 46 market maize 318 

samples were sorted kernel-by-kernel with the nirL board calibrated to identify and then reject kernels 319 

with aflatoxin >10 ng g-1 or fumonisin >1,000 ng g-1. Kernels were manually binned into accept or reject 320 

streams to isolate the theoretical sorting performance from mechanical error, such as imperfect reject 321 

kernel diversion.  322 

The rejection rate was significantly greater for samples for which previous bulk tests detected 323 

either aflatoxin (p = 0.014) or fumonisin (p < 0.001, Fig. 4). No significant interaction was detected 324 

between aflatoxin and fumonisin contamination and rejection rate. In almost every case in which 325 

aflatoxin or fumonisin were detectable in the sorted maize, the accepted maize had lower aflatoxin 326 

levels than the rejected maize (Fig. 5). In 21 of 25 cases (84%), the accepted maize fractions had lower 327 

aflatoxin levels than those of the rejected maize fractions.  In 14 cases (56%), the accepted maize had 328 

aflatoxin < 10 ng g-1 and the rejected maize had > 10 ng g-1. In 25 of 27 cases (93%), accepted maize had 329 

lower fumonisin levels than rejected maize,  while in 15 cases (56%) the accepted maize had fumonisin < 330 

1,000 ng g-1 and the rejected maize had fumonisin > 1,000 ng g-1. Toxin levels were significantly lower in 331 
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the accepted maize than the rejected maize by 0.78 log(ng g-1) for aflatoxin and 0.79 log(ng g-1) for 332 

fumonisin, p < 0.001) for each toxin, blocking by sample. These estimates corresponded to an 83% and 333 

84% reduction in aflatoxin and fumonisin, respectively. Sorting efficacy was not affected by the district 334 

the samples were purchased from or by the sorting reject rate (p > 0.05 for each parameter).  335 

3.3 Evaluation of alternative classification algorithms and spectral data do not suggest any major 336 

limitations to the existing sorter software or hardware. 337 

 In addition to evaluating the effect of the detector hardware (by comparing nirH, nirL and the in 338 

silico nirHL board as discussed above), we assessed two other potential software and hardware 339 

limitations: (i) the choice of classification algorithm, and (ii) the choice of LED peak emission 340 

wavelengths.  341 

We compared the existing discriminant analysis algorithm with random forest (RF) and support 342 

vector machine (SVM) algorithms for classifying kernels based on spectra captured by the nirL and nirH 343 

boards.  These machine learning algorithms were chosen because (i) they classify using all 205 features 344 

simultaneously, unlike the LDA algorithm which uses only 3 selected features, and (ii) SVMs have 345 

previously been used for classifying aflatoxin levels in single corn kernels (Samiappan et al., 2013) and 346 

RFs have outperformed LDA in other contexts (Cutler et al., 2007). For the nirL board, neither RF nor 347 

SVM improved upon LDA (Fig. 3). For the nirH board, RF models were marginally superior to LDA for 348 

rejecting aflatoxin > 10 ng g-1 (Fig. S1). Nonetheless, even the best performing alternative nirH board 349 

calibration (RF rejecting aflatoxin > 10 or fumonisin > 100 ng g-1, Sn = 0.76 and Sp = 0.81) was inferior to 350 

the best nirL LDA calibration. In other research, full-spectrum partial least squares regression did not 351 

improve upon LDA to classify single kernels as having high (> 100 ng g-1) or low (<10 ng g-1) aflatoxin 352 

levels (Pearson et al., 2001). These results suggest these machine learning models do not provide 353 

sufficient performance increases to justify their increased complexity. 354 

To test the potential impact of building circuit boards with LEDs at alternative peak emission 355 

wavelengths, FT-NIR spectra from 800 nm to 2,800 nm was used in RF and SVM models. Use of RF and 356 

SVM models with these spectral data to classify kernels at the aflatoxin > 10 and fumonisin > 1,000 357 

thresholds using only wavelength intensity values gave poor classification performance (RF Sn = 0.50 358 

and Sp = 0.76, SVM Sn = 0.39 and Sp = 0.80). It was not computationally feasibly to enumerate all the 359 

multi-spectral features used as candidate features in the previous limited-spectra analysis, i.e. all 360 

pairwise differences, ratios, and second-derivatives, of > 1,000 spectra for exhaustive search 361 

classification. While feature selection strategies prior to classification have been used for classification 362 

of aflatoxin-contaminated hazelnuts (Kalkan, Beriat, Yardimci, & Pearson, 2011) and chili pepper (Ataş, 363 

Yardimci, & Temizel, 2012), a study classifying bulk maize samples as having aflatoxin > 20 ng g-1 using 364 

spectrophotometric instruments with spectral ranges of 400-2,500 nm and 1,100-2,500 nm achieved 365 

cross-validation error rates of 15-25% (Fernández-Ibañez, Soldado, Martínez-Fernández, & de la Roza-366 

Delgado, 2009).  Those results are not superior to than the limited spectra results reported here.  367 

3.4 Aflatoxin and fumonisin levels in single kernels of Kenyan maize are skewed even under conditions 368 

of heavy selection.
 
 369 

In this study, we attempted to heavily enrich our single kernel sample for mycotoxin 370 

contamination by selecting kernels from bulk maize known to be contaminated with aflatoxin or 371 
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fumonisn (both market and inoculated field trial) and preferentially selecting kernels that fluoresced 372 

under ultraviolet light (market maize sample).  Of the 159 kernels from the market maize survey, 54 373 

(34%) showed fluorescence under ultraviolet light. Only a small proportion had high levels of 374 

contamination (Fig. 1). Only 17% and 3.2% of kernels, respectively, were contaminated with aflatoxin > 375 

10 ng g-1 or fumonisin > 1,000 ng g-1. A few kernels contained very high mycotoxin levels, up to 7,200 ng 376 

g-1 total aflatoxin or 93,000 ng g-1 total fumonisin.  377 

From the 220 kernels selected from A. flavus-inoculated field trials, contamination rates of kernels 378 

were higher and less skewed (Fig. 1). Overall, 59% and 22% of kernels were contaminated with aflatoxin 379 

and fumonisin above levels of concern, respectively. While 25% of kernels had no detectable aflatoxin, 380 

the toxin distribution in kernels with detectable aflatoxin was bimodal with peaks near 10 and 10,000 ng 381 

g-1. While 53% of kernels had no detectable fumonisin, the toxin distribution in kernels with detectable 382 

fumonisin peaked near 1,000 ng g-1 with a longer tail than the distribution for the market maize samples. 383 

The most contaminated kernels contained 1,454,000 ng g-1 aflatoxin and 237,000 ng g-1 fumonisin. The 384 

much higher rates and levels of aflatoxin contamination in the kernels from the field trial is unsurprising 385 

given the field trial inoculated with a highly toxigenic strain of A. flavus. Relatively higher odds of 386 

fumonisin contamination could be partially explained by a previous study that found a weak but 387 

significant correlation between fumonisin and aflatoxin prevalence in a bulk maize from Eastern Kenya 388 

(Mutiga et al., 2014).  389 

These results show skew in mycotoxin contamination even among samples selected to enrich for 390 

greater rates and levels of mycotoxin. The true distribution of contamination in a random sampling of 391 

market kernels, or naturally infected field maize kernels, would likely be even more skewed than 392 

reported here.  393 

3.5 Discoloration, insect damage, and fluorescence under ultraviolet light are associated with 394 

aflatoxin and fumonisin contamination of single maize kernels.
 
 395 

To extend the limited research in single kernel risk factors for mycotoxin contamination, kernels 396 

were scored for previously identified risk factors for mycotoxin contamination prior to grinding for 397 

mycotoxin analysis. In univariate analysis, kernel brokenness, discoloration, insect damage, and 398 

fluorescence under UV light, were associated with mycotoxin contamination (Supplemental Table 1). 399 

Bright Greenish Yellow Fluorescence (BGYF) was significantly associated with aflatoxin contamination 400 

above 10 ng g-1 (p = 0.028). Bright Orangish Fluorescence (BOF) was marginally associated with 401 

fumonisin contamination above 1,000 ng g-1 (p= 0.078) and undifferentiated fluorescence had a stronger 402 

association (p = 0.003). Light kernels, those with mass in the lower 10th, were significantly associated 403 

with aflatoxin contamination (p < 0.001).  Contamination with aflatoxin was non-independent from 404 

contamination with fumonisin (p < 0.001, odds ratio (OR) = 4.6), with 10% of kernels in this study having 405 

both aflatoxin and fumonisin above levels of concern. 
 406 

While almost all highly contaminated kernels showed the presence of at least one factor 407 

associated with mycotoxin contamination, a few asymptomatic kernels had aflatoxin above the 408 

maximum tolerable limits. Out of the 92 kernels with aflatoxin > 10 ng g-1, 4 kernels had aflatoxin levels 409 

ranging 14 to 481 ng g-1 and did not exhibit any of the factors associated with mycotoxin contamination. 410 

None of the 27 kernels with fumonisin > 1,000 ng g-1 were asymptomatic. A previous single-kernel study 411 

that investigated the relationship between mycotoxin contamination, discoloration, and fluorescence 412 
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under ultraviolet light, reported a few asymptomatic kernels with aflatoxin levels up to 17 ng g-1 and 413 

fumonisin levels up to 1,300 ng g-1 (Pearson et al., 2010). 414 

In multivariate logistic regression (Table 2), factors significantly associated with higher odds of 415 

both aflatoxin > 10 ng g-1 and fumonisin > 1,000 ng g-1 included discoloration (aflatoxin OR = 4.6, 416 

fumonisin OR = 4.2), insect damage (aflatoxin OR = 5.3, fumonisin OR = 3.2), and toxin-specific 417 

fluorescence under UV light (aflatoxin OR = 2.6; fumonisin OR = 3.8). In addition, the lightest kernels in 418 

each sample set had higher odds of aflatoxin presence (p < 0.001, OR = 9.7), and kernels with breakage 419 

had borderline significant higher odds of fumonisin presence (p = 0.051, OR = 2.8).  420 

4. Discussion 421 

4.1 Sorting strategies to reduce aflatoxin and fumonisin can meet a real need in African maize value 422 

chains. 423 

The efficacy of sorting Kenyan market maize with a relatively simple multi-spectral sorter are 424 

consistent with results that have been reported based on sorting maize with more sophisticated 425 

spectrometry. High-speed dual–wavelength sorting reduced aflatoxin and fumonisin levels in 426 

commercial yellow maize samples by around 80% (Pearson et al., 2004), and identified over 95% of 427 

extensively discolored, fungus-infected grains (Wicklow & Pearson, 2006). In dual-wavelength sorting of 428 

white maize samples, using reflectance of 500 nm and 1,200 nm, fixed reject rates of 4 to 9% achieved 429 

an average reduction of aflatoxin by 46% and fumonisin by 57% (Pearson et al., 2010). One remaining 430 

challenge for is sorting technology is that while mycotoxin levels were reduced, on average, by just over 431 

80%, in some cases aflatoxin or fumonisin levels remaining in the accepted fraction were still above 432 

levels of concern.  This shows that while the current technology could improve food safety, it is not yet 433 

sufficient to ensure mycotoxins levels are below concern. Overall, this relative simple, multi-spectral 434 

sorter has shown potential to reduce mycotoxins in Kenyan maize.  Follow-up for this study should work 435 

to (i) improve the theoretical performance of the machine, e.g. by improving hardware or software, and 436 

(ii) better adapt the sorting technology to the conditions in the local hammer mills where it is intended 437 

for use, e.g. by reducing the cost of components and increasing throughput. 438 

The use of this type of optical sorting technology in local hammer mills could improve upon classic 439 

food processing operations for mycotoxin reduction in maize. In resource-constrained households, many 440 

of these traditional food processing operations are labor intensive and do not integrate directly into the 441 

preferred maize value-chain involving local hammer milling. Traditional food processing steps of 442 

winnowing, washing, crushing, and dehulling were responsible for aflatoxin and fumonisin removal rates 443 

between 40-90% for traditional food products in Benin (Fandohan et al., 2005). Manual sorting of 444 

kernels to remove visibly infected or damaged maize can remove up to 70% of the fumonisin in the 445 

maize under laboratory conditions, and addition of a washing step with ambient temperature water is 446 

able to remove an additional 13% of fumonisin (van Der Westhuizen et al., 2011). When carried out by 447 

residents of subsistence farming communities, a similar procedure reduced fumonisin in maize by 84% 448 

and in porridge by 65% (van der Westhuizen et al., 2010). Traditional sorting prior to milling reduced 449 

fumonisin in post-milling maize flour by a mean of 65%, but was ineffective at reducing aflatoxin levels 450 

(Mutiga et al., 2014). We have found that density-based sorting can also remove a substantial 451 

proportion of aflatoxin from maize samples (RJN, unpublished).  452 
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The sorting technology evaluated here, perhaps combined with density-based sorting, could be 453 

integrated directly into existing local hammer milling infrastructure as a grain cleaning unit operation 454 

directly prior to milling, perhaps strategically located at the entrance to local open-air markets. With 455 

access to such technology, consumers would able to apply an inexpensive intervention to remove the 456 

most heavily mycotoxin-contaminated kernels and then consume the majority of their existing food with 457 

minimal exposure to mycotoxins. Coupled with information access, this could enhance consumer 458 

awareness of the issues and thus provide incentives for implementation of mycotoxin management 459 

measures throughout the maize value chain.  460 

4.2 Opportunities to improve the performance of multi-spectral sorting.  461 

Further improvements to the performance of this multi-spectral sorting technology could be 462 

driven by hardware improvements and further research to overcome some limitations to sorting 463 

algorithm.  464 

Concerning hardware, increasing or optimizing the emission spectra range of the sorter may 465 

increase performance; it is not a given the discrete LEDs evaluated in the study (with spectral ranges 466 

from 470 to 1,070 nm or 700 to 1,550 nm) are the best for this particular application, although previous 467 

literature supports their use. Previous sorting work, which selected the best features from a full-468 

spectrum scan experiment, used 500 nm (blue-green) and 1,200 nm spectra to discriminate white maize 469 

kernels with high levels of aflatoxin (> 100 ng g-1) or fumonisin (> 40 ppm) from those with low levels (< 470 

10 ng g-1 or < 2 ng g-1 aflatoxin or fumonisin, respectively) (Pearson et al., 2010). In contrast, only near-471 

infrared spectra, 750 and 1,200 nm, were optimal for high-speed sorting of yellow maize (Pearson et al., 472 

2004). Maize samples in this study included both white and yellow kernels and the best performing 473 

algorithm used the full range of LEDs from 470-1,070 nm. 474 

One potential improvement supported by data would be to incorporate ultraviolet light into the 475 

panel of emission LEDs. Our results found that fluorescence under ultraviolet light was a risk factor for 476 

aflatoxin and fumonisn contamination. In addition, in the hyperspectral imaging work described above, 477 

peak fluorescence from 365 nm excitation was characteristic of aflatoxin contamination (Yao et al., 478 

2010) and subsequent work showed that 260 nm excitation of aflatoxin extracts from maize kernels 479 

showed a 600 nm peak that was free from interference by kojic acid (Hruska et al., 2014). Given the 480 

current hardware setup it would be relatively simple to add UV LEDs to the circuitry to evaluate 481 

ultraviolet fluorescence in real-time sorting applications. 482 

There are also a few limitations to the sorting algorithm itself, which could be addressed by 483 

further research. We chose to sort maize based on a calibration that was about 80% accurate to identify 484 

kernels with aflatoxin >10 ng g-1 and fumonisin >1,000 ng g-1, but we do not know the optimum 485 

classification threshold. Choice of an optimal classifier for this mycotoxin sorting problem is difficult 486 

because it would require both knowledge of expected proportion of kernels in each class (class skew) 487 

and the costs associated with misclassification of both contaminated and uncontaminated kernels (error 488 

costs) (Fawcett, 2006). While there is strong prior knowledge (supported by our results) that naturally-489 

occurring mycotoxin contamination is highly skewed towards low rates of contamination, 490 

misclassification costs for this problem are more difficult to quantify. One would have to balance the 491 

impact of low specificity on food security (through increased sorting losses) with the impact of low 492 

sensitivity on health (through consuming a larger number of highly-contaminated maize kernels). 493 
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Because this technology is intended for use among food insecure populations, we chose to prioritize 494 

minimizing food loss. Therefore, we chose the best calibration as one with maximum specificity for 495 

which further increases in specificity would dramatically reduce sensitivity. An additional advantage of 496 

using the aflatoxin >10 and fumonisin >1,000 ng g-1 thresholds for sorting is those thresholds nominally 497 

target kernels that exceed levels of concern for each mycotoxin. In contrast, use of a more stringent 498 

threshold would reject additional kernels that are unlikely to negatively impact health and may increase 499 

increased food losses. 500 

Two more caveats should be noted. The first is that the full set of single kernel data was used for 501 

training, with sensitivity and specificity calculated from cross-validation. While the algorithm was 502 

validated by sorting novel bulk maize samples, additional work could validate the single kernel 503 

performance of the classification algorithm. One approach would be to analyze single kernels from the 504 

sorted bulk maize samples that are classified as toxin positive or negative to determine empirical false 505 

negative and positive rates.  506 

The second caveat is that calibration kernels were taken from bulk samples known to be 507 

mycotoxin positive. This selection creates a bias towards analyzing samples where Aspergillus of 508 

Fusarium fungi are capable of producing mycotoxins. One well-accepted method of aflatoxin biocontrol 509 

is to inoculate fields with Aspergillus incapable of producing aflatoxin that are then able to exclude 510 

aflatoxin producing strains (Wu & Khlangwiset, 2010).  A biocontrol product being promoted in Africa as 511 

“Aflasafe” (Aflasafe.com) has strong potential for adoption in Kenya (Marechera & Ndwiga, 2015).  512 

Further work is needed to develop sorting algorithms that could accommodate maize treated with 513 

atoxigenic strain(s) .  514 

4.3 Single kernel phenotyping reveals multiple targets for sorting-based mycotoxin management.  515 

Our results showed a skewed distribution of aflatoxins and fumonisins in market samples and 516 

confirmed that phenotypes of discoloration, insect damage, and fluorescence under ultraviolet light are 517 

associated with mycotoxin contamination. The skewed rates and levels of contamination observed here 518 

in kernels from Kenyan market maize samples are consistent with existing literature, although the 519 

precise nature of the distribution are likely to vary. In a study of single kernels from intact ears of U.S. 520 

corn with visibly evident contamination characteristic of A. flavus, only 23%, 27%, and 41% of single 521 

kernels in three samples were contaminated with aflatoxin above 100 ng g-1 (Lee et al., 1980), and 522 

contaminated kernels had levels up to 80,000 ng g-1. Similarly, studies using wound inoculated corn 523 

found that 13 of 300 (4%) of randomly selected kernels contained aflatoxin above 10 ng g-1, two of those 524 

kernel above 1,000 ng g-1 (Pearson et al., 2001), and 13% of non-BGYF kernels contained aflatoxin above 525 

20 ng g-1 (Yao et al., 2010).  A study with Kenyan maize sampled from A. flavus inoculated field trials 526 

found only 6 and 20% of single kernels in two samples were contaminated with aflatoxin above 20 ng g-1 527 

(Turner et al., 2013), but toxin-positive kernels contained up to 85,000 ng g-1 total aflatoxin (Turner et 528 

al., 2013).  Single-kernel analysis of fumonisn in maize found that only 20% of visibly infected kernels 529 

contained detectable fumonisins, and 15 of the 300 kernels contained more than 100 mg kg-1 fumonisins 530 

(Mogensen et al., 2011).  These data support the general view that naturally-occurring aflatoxin and 531 

fumonisin contamination of maize kernels is highly skewed.  Given the biases in our kernel selection 532 

strategy to enrich for contaminated kernels (fluorescence screening and artificial inoculation), further 533 

work is required to understand the underlying variability in rates and levels of mycotoxin contamination 534 
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in single kernels. Future studies should involve larger random samples of single kernels from a more 535 

diverse set of market and field conditions.  536 

Finding that fluorescence under ultraviolet light is a risk factor for aflatoxin and fumonisin 537 

contamination in Kenyan maize builds upon a body of literature that has evaluated BGYF as indicator of 538 

kojic acid, an imperfect indicator of aflatoxin contamination (Shotwell & Hesseltine, 1981). Single-kernel 539 

maize studies have shown that BGYF (Pearson et al., 2001; Yao et al., 2010) and BGYF with discoloration 540 

(Pearson et al., 2010) are risk factors for aflatoxin. Additionally, bright orangish fluorescence (BOF) with 541 

discoloration has been identified as a risk factor for fumonisin (Pearson et al., 2010). Another line of 542 

research has used hyperspectral reflectance in the 400-600 nm range of single kernels excited with 365 543 

nm light to determine aflatoxin contamination, with an 84% and 91% accuracy to classify kernels with 544 

aflatoxin >20 or 100 ng g-1 aflatoxin (Yao et al., 2010). Results from this study suggest that fluorescence 545 

under ultraviolet light could be useful not only as an indicator of aflatoxin contamination, but 546 

simultaneously for fumonisin contamination as well.  This has significant relevance for the African maize 547 

value chain, where the two toxins frequently co-occur. 548 

Our study also confirms that general indicators of low-quality maize, such as insect damage, 549 

discoloration, breakage, and low mass, can be specifically useful features for managing mycotoxin 550 

contamination. A commercial, speed-sorting study of white corn in the USA, intended to remove 551 

aflatoxins and fumonisins, specifically highlighted insect-damaged BGYF kernels as a critical challenge for 552 

optical sorting (Pearson et al., 2010).  The germ portion of the kernel was entirely consumed without 553 

other external symptoms such as moldiness or discoloration.  Insect damage is a vector for both A. 554 

flavus and F. verticillioides contamination and subsequent mycotoxin-contamination (Miller, 2001; 555 

Wicklow, 1994). Consistent with this observation, aflatoxin-contaminated maize kernels have previously 556 

been shown to have lower average mass than uncontaminated kernels from the same ear (Lee et al., 557 

1980). And in Kenyan maize, single kernel breakage was previously associated with aflatoxin and 558 

fumonisin levels (Mutiga et al., 2014). One possible advantage of the visible to infrared spectra 559 

employed in this study was the simultaneous ability to assess visible discoloration (through differences 560 

in visible light reflectance) and possibly assess density changed (though difference in NIR reflectance). In 561 

addition, these observations suggest that grain cleaning operations, removing low mass or low density 562 

kernels, could complement the multi-spectral sorting as an integrated approach to mycotoxin 563 

management. 564 
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Tables 721 

Table 1.  722 

Selection process for individual maize kernels sourced from two concurrent studies in Kenya.  723 

Kernel selection process 

component 

Maize sample source study 

Kenyan market maize survey 
a
 A. flavus inoculated field trial 

a
 

Method to enrich for bulk samples 

with mycotoxin contamination 

Randomly selected bulk samples 

that previously tested above 10 ng 

g
-1

 aflatoxin or 1,000 ng g
-1

 

fumonisin 

Field maize was inoculated with an 

aflatoxin-producing A. flavus.   

Method to enrich for mycotoxin 

contamination among of individual 

kernels that are scanned 

Select all kernels exhibiting BGYF
b
 

or BOF
b
 and randomly select 3 non-

fluorescent kernels from the same 

bulk sample; n=233 

None deemed necessary, due to 

the field inoculation.  Kernels were 

selected randomly; n=220 

Number of bulk and individual 

kernels selected 

25 bulk samples from sites in Meru 

(68 kernels), Machakos (46 

kernels), or Kitui (44 kernels) 

17 bulk samples from distinct 

genetic lines selecting 10 kernels 

from each of 12 samples and 20 

kernels from each of 5 samples 

Single kernel spectroscopy Triplicate scan through sorting machine using low (nirL) and high (nirH) 

wavelength circuit board (9 primary features on each board, 470-1,070 

and 910-1,150 nm, nirL and nirH boards) 

Duplicate scan by FT-NIR (1,154 primary features, 800-2,780 nm)  

Method to enrich for spectral 

diversity among scanned kernels 

assayed by wet chemistry 

Principal component analysis of FT-

NIR spectra.  Sample across first 

principal component, stratified by 

site.   

None. The source study had 

resources to assay all kernels.   

Number of single kernels subject to 

mycotoxin analysis 

158 kernels 220 kernels  

Aflatoxin analytical method ELISA (this study) UHPLC
b
 (concurrent study) 

Fumonisin analytical method ELISA (this study) ELISA (this study) 

Phenotypes scored in physical 

examination  

BGYF/BOF 

Insect damage 

Discoloration 

Mass 

Whole kernel or dehulled 

Fluorescence under UV light
c
 

Insect damage 

Discoloration 

Mass 

All whole kernel 

Kernels used for sorter calibration All assayed (n=158) All assayed (n=220) 

Bulk samples used for sorter 

validation 

46 bulk samples from the market 

maize survey 

None used 

a References: Market survey (Eliphus, 2014). Field trial (Falade, et al., 2014). 724 
b BGYF, Bright Greenish Yellow Fluorescence.  BOF, Bright Orangish Fluorescence. UHPLC, Ultra-High 725 

Performance Liquid Chromatography 726 
c Only 120 kernels were available for physical examination, and in this examination fluorescence under 727 

UV light was not differentiated between BGYF or BOF.   728 

  729 
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Table 2.  730 

Logistic regression for factors associated with contamination of single kernels with aflatoxin or 731 

fumonisin. 732 

Model Parameter 

Model for Aflatoxin > 10 ng g
-1

   Model for Fumonisin > 1,000 ng g
-1

 

Parameter 

Estimate 

Odds Ratio 

(95% CI) P-value 

 

Parameter 

Estimate 

Odds Ratio 

(95% CI) 

P-

value 

Intercept -3.61 

0.03 (0.01, 

0.08) <0.001 

 

-4.40 

0.01 (<0.01, 

0.03) 

<0.00

1 

Discoloration 
a
 1.52 

4.58 (2.11, 

10.31) <0.001 

 

1.44 

4.22 (1.42, 

15.55) 0.016 

Insect Damaged 
a
 1.67 

5.31 (2.21, 

13.51) <0.001 

 

1.16 3.18 (1.21, 8.36) 0.018 

Mass in Lower 

10th 
a
 2.27 

9.70 (2.89, 

38.23) 0.001 

 

- - - 

Toxin Specific 

Fluorescence 0.96 

2.62 (1.27, 

5.52) 0.010 

 

1.35 

3.84 (1.48, 

10.82) 0.007 

Site: Field trial
b
 1.79 

6.00 (1.90, 

22.2) 0.004 

 

- - - 

Site: Kitui 
b
 1.56 

4.76 (1.38, 

18.86) 0.018 

 

- - - 

Site: Meru 
b
 -0.71 

0.49 (0.09, 

2.38) 0.383 

 

- - - 

Breakage 
a
 - 

c
 - - 

 

1.02 2.78 (0.98, 7.75) 0.051 

Full model - - <0.001   - - 

<0.00

1 
a Parameter estimates are for the presence of the factor. 733 
b Parameter estimates contrast with the category reference of Site: Machakos. 734 
d -, Parameter not estimated in the best fitting final model.  735 
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Table 3.  736 

Optical features used to identify and reject kernels with aflatoxin or fumonisin above given thresholds.  737 

Nominal Feature  

Number 

Individual Feature Component 

Operation 1 2 3 

nirL board rejecting aflatoxin > 10 ng g
-1

 or fumonisin > 1,000 ng g
-1

 

1 880 nm Infrared sum  - 
a
 Difference 

2 910 nm Infrared sum  - Difference 

3 910 nm Color sum  - Ratio 

nirH board rejecting aflatoxin > 10 ng g
-1

 or fumonisin > 1,000 ng g
-1

 

1 700 nm - - Absolute 

2 940 nm 1070 nm - Difference 

3 700 nm 970 nm 1070 nm 2
nd

 derivative 

nirHL in silico board rejecting aflatoxin > 10 ng g
-1

 or fumonisin > 100 ng g
-1

 

1 940 nm Infrared sum  - Difference 

2 Blue 
b
 Red 

b
 Color sum  2

nd
 derivative 

3 700 nm 970 nm 1070 nm 2
nd

 derivative 
a -, component not used for the calculation of this feature 738 
b Blue (470 nm), Green (527 nm), and Red (624 nm)  739 
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Figure Legends 740 

Fig. 1. Distribution of aflatoxin and fumonisin levels in single kernels from both the market maize 741 

survey (n=158) and the A. flavus inoculated field trial (n=220). Kernels below the level of detection for 742 

each mycotoxin (LOD of 1 ng g-1 for aflatoxin and 100 ng g-1 fumonisin) were counted in the bar just to 743 

the left of the level of detection. Light grey bars, kernels tested below LOD; dark grey bars, kernels 744 

tested below level of concern; black bars, kernels test above levels of concern of 10 ng g-1 aflatoxin or 745 

1,000 ng g-1 fumonisin.  746 

Fig. 2. Performance of the three-feature, linear discriminant analysis algorithm to reject single 747 

maize kernels contaminated with aflatoxin or fumonisin at various thresholds. The algorithm was trained 748 

to classify all 378 kernels using measured aflatoxin and fumonisin contamination and the best 3 of 205 749 

features from the spectra captured by the lower range (470-1,070 nm, nirL) and higher range (910-1,550 750 

nm, nirH) circuit board, as well as the in silico composite board (470-1,154 nm, nirHL with 816 features).  751 

Fig. 3. Performance of alternative classification algorithms to reject single kernels contaminated 752 

with aflatoxin or fumonisin at various thresholds. Each algorithm was trained to classify all 378 kernels 753 

using measured aflatoxin and fumonisin contamination and the appropriate combination of 205 754 

features from the spectra captured by the lower range (470-1,070 nm, nirL) circuit board. Algorithms 755 

evaluated are: LDA, linear discriminant analysis; RF, random forest; and SVM, support vector machines. 756 

Fig. 4. Reject rates in decimal mass fraction of sorted maize samples as classified by mycotoxin 757 

presence in previous bulk sample ELISA. For each box the solid line is the median reject rate, box height 758 

is the inner quartile range, whiskers extend to the most extreme value within 1.5*IQR of the box, and 759 

outliers are plotted as points.  760 

Fig. 5. Aflatoxin (top) and fumonisin (bottom) levels in the accept and reject streams of 46 Kenyan 761 

market maize samples sorted to removed single kernels with aflatoxin > 10 ng g-1 or fumonisin > 1,000 762 

ng g-1, using the visible to infrared spectrum board (nirL). A downward pointing arrow indicates that 763 

mycotoxin levels were reduced in the accept stream of the sorted maize sample. Points with no 764 

detectable mycotoxin are plotted at the LODs.  765 

Supplemental Figure Legends 766 

Fig. S1. Performance of the alternative classification algorithms to reject single kernels 767 

contaminated with aflatoxin or fumonisin at various thresholds. Each algorithm was trained to classify all 768 

378 kernels using measured aflatoxin and fumonisin contamination and the appropriate combination of 769 

205 features from spectra captured by the higher range (910-1,550 nm, nirH) circuit board. Algorithms 770 

evaluated are: LDA, linear discriminant analysis; RF, random forest; and SVM, support vector machines. 771 
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• Multi-spectral sorting can reduce aflatoxins and fumonisin mycotoxin in Kenyan market maize 

• Simple multi-spectral sorting may facilitate mycotoxin management by the consumer  

• Mycotoxin distribution in single-kernels of Kenyan market maize is skewed even under UV 

fluorescence enrichment. 


