83 research outputs found

    Bog plant/lichen tissue nitrogen and sulfur concentrations as indicators of emissions from oil sands development in Alberta, Canada

    Get PDF
    Increasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3-6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3--N, or SO42--S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition

    Experimental nitrogen addition alters structure and function of a boreal poor fen: Implications for critical loads

    Get PDF
    Bogs and fens cover 6 and 21%, respectively, of the 140,329 km2 Oil Sands Administrative Area in northern Alberta. Regional background atmospheric N deposition is low (b2 kg N ha−1 yr−1 ), but oil sands development has led to increasing N deposition (as high as 17 kg N ha−1 yr−1 ). To examine responses to N deposition, over five years, we experimentally applied N (as NH4NO3) to a poor fen near Mariana Lake, Alberta, unaffected by oil sands activities, at rates of 0, 5, 10, 15, 20, and 25 kg N ha−1 yr−1 , plus controls (no water or N addition). At Mariana Lake Poor Fen (MLPF), increasing N addition: 1) progressively inhibited N2-fixation; 2) had no effect on net primary production (NPP) of Sphagnum fuscum or S. angustifolium, while stimulating S. magellanicum NPP; 3) led to decreased abundance of S. fuscum and increased abundance of S. angustifolium, S. magellanicum, Andromeda polifolia, Vaccinium oxycoccos, and of vascular plants in general; 4) led to an increase in stem N concentrations in S. angustifolium and S. magellanicum, and an increase in leaf N concentrations in Chamaedaphne calyculata, Andromeda polifolia, and Vaccinium oxycoccos; 5) stimulated root biomass and production;6) stimulated decomposition of cellulose, but not of Sphagnum or vascular plant litter; and 7) had no or minimal effects on net N mineralization in surface peat, NH4 +-N, NO3 −-N or DON concentrations in surface porewater, or peat microbial composition. Increasing N addition led to a switch from new N inputs being taken up primarily by Sphagnum to being taken up primarily by shrubs. MLPF responses to increasing N addition did not exhibit threshold triggers, but rather began as soon as N additions increased. Considering all responses to N addition, we recommend a critical load for poor fens in Alberta of 3 kg N ha−1 yr−1

    Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Tröger's base

    Get PDF
    Tröger's base (TB) is often used as a building block for the synthesis of Polymers of Intrinsic Microporosity (PIMs) due to its rigid bicyclic V-shaped structure. In this study the TB component in the structure of a PIM is replaced by 2,3:6,7-dibenzobicyclo[3.3.1]nonane, a purely carbocyclic analogue of TB. This modification results in only a slightly reduced amount of microporosity as determined using nitrogen adsorption. Further comparisons with previously reported PIMs indicate that this building unit (and therefore TB) is significantly less effective for the generation of intrinsic microporosity than spirobisindane, a commonly used structural unit for PIM synthesis. It appears that the V-shape of the 2,3:6,7-dibenzobicyclo[3.3.1]nonane and TB units allows closer contact between polymer chains thereby enhancing packing efficiency

    Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors

    Get PDF
    Diffuse Midline Glioma, formerly Diffuse Intrinsic Pontine Glioma (DIPG), is the deadliest pediatric brainstem tumor with median survival of less than one year. Here, we investigated 1) whether direct delivery of adenovirus expressing CD40L (Ad-CD40L) to brainstem tumors would induce immune-mediated tumor clearance and, 2) if so, whether therapy would be associated with a manageable toxicity due to immune-mediated inflammation in the brainstem. Methods Syngeneic gliomas in the brainstems of immune competent mice were treated with Ad-CD40L and survival, toxicity and immune profiles determined. A clinically translatable vector, whose replication would be tightly restricted to tumor cells, rAd-Δ24-CD40L, was tested in human patient-derived Diffuse Midline Gliomas and immunocompetent models. Results Expression of Ad-CD40L restricted to brainstem gliomas by pre-infection induced complete rejection, associated with immune cell infiltration, of which CD4+ T cells were critical for therapy. Direct intra-tumoral injection of Ad-CD40L into established brainstem tumors improved survival and induced some complete cures but with some acute toxicity. RNA-seq analysis showed that Ad-CD40L therapy induced neuroinflammatory immune responses associated with IL-6, IL-1ÎČ and TNF-α. Therefore, to generate a vector whose replication, and transgene expression, would be tightly restricted to tumor cells, we constructed rAd-Δ24-CD40L, the backbone of which has already entered clinical trials for Diffuse Midline Glioma. Direct intra-tumoral injection of rAd-Δ24-CD40L, with systemic blockade of IL-6 and IL-1ÎČ, generated significant numbers of cures with readily manageable toxicity. Conclusions Virus-mediated delivery of CD40L has the potential to be effective in treating Diffuse Midline Gliomas without obligatory neuroinflammation-associated toxicity

    Ad5NULL-A20 - a tropism-modified, αvÎČ6 integrin-selective oncolytic adenovirus for epithelial ovarian cancer therapies

    Get PDF
    Purpose: Virotherapies are maturing in the clinical setting. Adenoviruses (Ad) are excellent vectors for manipulability and tolerance of transgenes. Poor tumour-selectivity, off-target sequestration and immune inactivation hamper clinical efficacy. We sought to completely redesign Ad5 into a refined, tumour selective virotherapy targeted to αvÎČ6 integrin, which is expressed in a range of aggressively transformed epithelial cancers but non-detectable in healthy tissues. Experimental Design: Ad5NULL-A20 harbours mutations in each major capsid protein to preclude uptake via all native pathways. Tumour-tropism via αvÎČ6-targeting was achieved by genetic insertion of A20 peptide (NAVPNLRGDLQVLAQKVART) within the fiber knob protein. The vector's selectivity in vitro and in vivo was assessed. Results: The tropism-ablating triple mutation completely blocked all native cell entry pathways of Ad5NULL-A20 via coxsackie and adenovirus receptor (CAR), αvÎČ3/5 integrins and coagulation factor 10 (FX). Ad5NULL-A20 efficiently and selectively transduced αvÎČ6+ cell lines and primary clinical ascites-derived EOC ex vivo, including in the presence of pre-existing anti-Ad5 immunity. In vivo biodistribution of Ad5NULL-A20 following systemic delivery in non-tumour-bearing mice was significantly reduced in all off-target organs, including a remarkable 107-fold reduced genome accumulation in the liver compared to Ad5. Tumour uptake, transgene expression and efficacy were confirmed in a peritoneal SKOV3 xenograft model of human EOC, where oncolytic Ad5NULL-A20-treated animals demonstrated significantly improved survival compared to those treated with oncolytic Ad5. Conclusions: Oncolytic Ad5NULL-A20 virotherapies represent an excellent vector for local and systemic targeting of αvÎČ6-over-expressing cancers, and exciting platforms for tumour selective over-expression of therapeutic anti-cancer modalities, including immune checkpoint inhibitors

    Classification of current anticancer immunotherapies

    Get PDF
    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches

    Tribenzotriquinacene-based polymers of intrinsic microporosity

    No full text
    Bowl-shaped tribenzotriquinacene (TBTQ) derivatives containing hydroxyl groups at their peripheral sites are successful monomers for the synthesis of polymers of intrinsic microporosity (PIMs) with examples of both network and non-network PIMs demonstrated. Nitrogen adsorption measurements reveal apparent surface areas in the range of 560–670 m2 g−1 for the TBTQ-PIMs. A network structure and i-propyl, rather than methyl substitution at the apical site of the TBTQ unit, appear to favour porosity

    Centrotriindane- and triptindane-based polymers of intrinsic microporosity

    Get PDF
    In this paper we describe the synthesis and physical characterisation of polymers derived from hydroxyl containing bowl-shaped “centrotriindane” and propellane-type “triptindane” monomers using the dibenzodioxin-forming polymerisation reaction with 2,3,5,6-tetrafluoroterephthalonitrile. Evaluation of the microporosity of the resulting polymers via nitrogen adsorption measurements revealed apparent Brunauer-Emmett-Teller (BET) surface areas in the range of 555–1039 m2 g−1 which can be related to the distinct shape of the monomeric units. An evaluation of the shape of the monomers, using X-ray crystallography, helps to explain the degree of microporosity of the polymers from which they are made
    • 

    corecore