28 research outputs found

    Determination of metals in tree rings by ICP-MS using ash from a direct mercury analyzer

    Get PDF
    © 2020 by the authors. Elemental profiles in cores of tree trunks (bole wood) have been used for environmental monitoring and reconstruction of metal pollution history. Mercury (Hg) is a global pollutant that can be accurately measured in tree rings in a simple and pragmatic fashion using a direct mercury analyzer (DMA) that is based on thermal decomposition, amalgamation, and atomic absorption spectrophotometry. In this feasibility study, we demonstrate that the ash remaining after the DMA analyses can be used to quantify a wide range of other non-volatile elements (Ba, Be, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Th, and U) in that same sample of wood by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted acid digestion. Other elements (Ag, Cd, Cs, Rb, Tl, and V) exhibited poor recoveries, possibly due to losses during sample preparation. We assessed the accuracy with reference materials, spikes, and by comparison with EPA Method 3052 (Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices). For the first group of elements (deemed suitable for the method), recoveries ranged between 80% and 120% and the relative standard deviation was generally \u3c 15%, indicating acceptable precision. We applied the method to five species of trees: Eastern red cedar (Juniperus virginiana), loblolly pine (Pinus taeda), shortleaf pine (Pinus echinata), white oak (Quercus alba), and tulip poplar (Liriodendron tulipifera) from Holly Springs National Forest in north Mississippi, USA. Mercury concentrations (ng/g ± SE) were highest in the cedar (1.8 ± 0.3; n = 5), followed by loblolly pine (1.6 ± 0.3, n = 3), shortleaf pine (1.2 ± 0.2; n = 3), oak (1.1 ± 0.2; n = 5), and poplar (0.5 ± 0.1; n = 5). Concentrations of other elements were generally Fe \u3e Mg \u3e Ba ≈ Sr ≈ Mn \u3e Cr ≈ Cu \u3e Ni ≈ Rb \u3e Co \u3e Ga ≈ Ag, with the other elements generally below the method detection limit (MDL). Overall, we showed that the DMA can be used to not only determine total Hg in segments of tree core, but can serve as the ashing step in the preparation of wood for ICP-MS analysis, thus allowing the determination of non-volatile elements along with Hg in the very same sample

    Can the MerPAS Passive air sampler discriminate landscape, seasonal, and elevation effects on atmospheric mercury? A feasibility study in Mississippi, USA

    Get PDF
    © 2019 by the authors. Accurately measuring gaseous elemental mercury (GEM) concentrations in the atmosphere is important to understand its sources, cycling, distribution, and temporal trends. The MerPAS passive air sampler from Tekran Inc. (Toronto, ON, Canada) captures GEM on sulfur-impregnated activated carbon after it passes through a Radeillo diffusive barrier. Because they are small, relatively low in cost, and require no power, they can be deployed at multiple locations, yielding a much greater spatial resolution, albeit at coarser temporal resolution, compared to active sampling. In this study, we used the MerPAS to measure GEM concentration gradients at a mixed hardwood forest, wetland, pond, and a mowed (grass) field, all within close proximity ( \u3c 500 m) to each other. Vertical profiles (0.5, 3.0, 5.5 m) were assessed during summer and winter. The sorbent was analyzed using a direct mercury analyzer. The samplers were captured between 0.90 to 2.2 ng over 2 weeks, well above the mean blank of 0.14 ng. We observed differences between the landscapes, elevation, and seasons. Nearest to the surface, GEM concentrations were lowest in the wetland (both seasons), where there was dense vegetation, and highest in the mowed field (both seasons). Generally, GEM levels increased with the elevation above the ground, except for the forest where the trend was slightly reversed. This suggests a possible net GEM deposition from the atmosphere to surfaces for three of the four landscapes. GEM concentrations were slightly higher in the winter than the summer at 5.5 m height where air masses were unimpeded by vegetation. Overall, we conclude that the MerPAS is indeed capable of measuring GEM gradients between landscapes, elevations, and seasons, if given sufficient collection time, good analytical precision, and low blank levels

    Mercury Methylation Potentials in Sediments of an Ancient Cypress Wetland Using Species-Specific Isotope Dilution GC-ICP-MS

    Get PDF
    Wetlands are of a considerable environmental value as they provide food and habitat for plants and animals. Several important chemical transformations take place in wetland media, including the conversion of inorganic mercury (Hg) to monomethylmercury (MeHg), a toxic compound with a strong tendency for bioconcentration. Considering the fact that wetlands are hotspots for Hg methylation, we investigated, for the first time, Hg methylation and demethylation rates in an old growth cypress wetland at Sky Lake in the Mississippi Delta. The Sky Lake ecosystem undergoes large-scale water level fluctuations causing alternating periods of oxic and anoxic conditions in the sediment. These oscillating redox conditions, in turn, can influence the transformation, speciation, and bioavailability of Hg. In the present study, sediment cores from the wetland and Sky Lake itself were spiked with enriched stable isotope tracers of inorganic Hg and MeHg and allowed to incubate (in-situ) before freezing, sectioning, and analysis. Methylation rates (day−1) ranged from 0.012 ± 0.003 to 0.054 ± 0.019, with the lowest rate in the winter and the highest in the summer. Demethylation rates were about two orders of magnitude higher, and also greater in the warmer seasons (e.g., 1.84 ± 0.78 and 4.63 ± 0.51 for wetland sediment in the winter and summer, respectively). Methylation rates were generally higher in the open water sediment compared to wetland sediment, with the latter shaded and cooler. Both methylation (r = 0.76, p = 0.034) and demethylation (0.97, p = 0.016) rates (day−1) were positively correlated with temperature, but not with most other water quality parameters. MeHg concentration in the water was correlated with pH (r = 0.80, p \u3c 0.05), but methylation rates were only marginally correlated (r = 0.71). Environmental factors driving microbial production of MeHg in the system include warm temperatures, high levels of labile natural organic matter, and to a lesser extent the relatively low pH and the residence time of the water. This study also provides baseline data that can be used to quantify the impacts of modifying the natural flow of water to the system on Hg methylation and demethylation rates

    Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis of Lower Pecos Rock Paints and Possible Pigment Sources

    Get PDF
    Chemical analyses of prehistoric rock paints from the Lower Pecos Region of southwestern Texas were undertaken using laser ablation-inductively coupled plasma-mass spectrometry. This technique allowed us to measure the chemical composition of the paint pigments with minimal interference from a natural rock coating that completely covers the ancient paints. We also analyzed samples representing potential sources of paint pigments, including iron-rich sandstones and quartzite from the study area and ten ochre samples from Arizona. Cluster analysis, principle component analysis and bivariate plots were used to compare the chemical compositions of the paint and pigment sources. The results indicate that limonite extracted from the sandstone was the most likely source for some of the pigments, while ochre was probably used as well

    Are rural and small community aerated wastewater stabilization ponds a neglected source of microplastic pollution?

    Get PDF
    Wastewater treatment systems collect and treat sewage that includes microplastics (MPs). However, we are not aware of any studies on the occurrence and distribution of MPs in wastewater stabilization ponds (WSPs), which serve small communities worldwide. Here, we characterized MPs (~45 µm–5 mm) in an aerated WSP serving ~500 houses and an adjacent lake. Putative MPs were most abundant in duckweed (Lemna minor) and sludge (75 ± 22 and 12.8 ± 3.1 particles/g, respectively: ±1 standard deviation (SD), n = 6, dry weight). In the water, average concentrations (particles/L ± 1 SD, n = 6) were highest in the pond (4.1 ± 0.6), followed by effluent (3.9 ± 0.5) and the lake (2.6 ± 0.6). Over 20 types of MPs were identified in each different compartment, with the distribution varying somewhat between the water, sludge, and duckweed. Polyester and polyethylene were the predominant types, followed by polyethylene terephthalate, polyacrylate, polyvinyl chloride, polystyrene, and others. Morphologies consisted of fibers (62–71%), fragments (28–37%), and beads (1–6%). High-density polymers were more frequently found in sludge. Potential sources of the MPs include synthetic textiles from laundry and other plastics washed down household drains. Overall, with ~786,000 MPs/day released in the pond effluent and with duckweed a source of food for waterfowl, we demonstrate that WSPs can be point sources of MPs to both aquatic and terrestrial ecosystems and thus deserve further scrutiny

    Occurrence of microplastic pollution at oyster reefs and other coastal sites in the Mississippi sound, USA: Impacts of freshwater inflows from flooding

    Get PDF
    © 2020 by the authors. Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters (Crassostrea virginica) are especially vulnerable to MP pollution. In this study, we assessed MP pollution in water at oyster reefs along the Mississippi Gulf Coast when: (1) historic flooding of the Mississippi River caused the Bonnet Carré Spillway to remain open for a record period of time causing major freshwater intrusion to the area and deleterious impacts on the species and (2) the spillway was closed, and normal salinity conditions resumed. Microplastics (~25 μm-5 mm) were isolated using a single-pot method, preparing samples in the same vessel (Mason jars) used for their collection right up until the MPs were transferred onto filters for analyses. The MPs were quantified using Nile Red fluorescence detection and identified using laser direct infrared (LDIR) analysis. Concentrations ranged from ~12 to 381 particles/L and tended to decrease at sites impacted by major freshwater intrusion. With the spillway open, average MP concentrations were positively correlated with salinity (r = 0.87, p = 0.05) for sites with three or more samples examined. However, the dilution effect on MP abundances was temporary, and oyster yields suffered from the extended periods of lower salinity. There were no significant changes in the relative distribution of MPs during freshwater intrusions; most of the MPs (\u3e50%) were in the lower size fraction (~25-90 μm) and consisted mostly of fragments (~84%), followed by fibers (~11%) and beads (~5%). The most prevalent plastic was polyester, followed by acrylates/polyurethanes, polyamide, polypropylene, polyethylene, and polyacetal. Overall, this work provides much-needed empirical data on the abundances, morphologies, and types of MPs that oysters are exposed to in the Mississippi Sound, although how much of these MPs are ingested and their impacts on the organisms deserves further scrutiny. This paper is believed to be the first major application of LDIR to the analysis of MPs in natural waters

    Air/surface exchange of gaseous elemental mercury at different landscapes in Mississippi, USA

    Get PDF
    © 2019 by the authors. Mercury (Hg) is a global pollutant with human health and ecological impacts. Gas exchange between terrestrial surfaces and the atmosphere is an important route for Hg to enter and exit ecosystems. Here, we used a dynamic flux chamber to measure gaseous elemental Hg (GEM) exchange over different landscapes in Mississippi, including in situ measurements for a wetland (soil and water), forest floor, pond, mowed field and grass-covered lawn, as well as mesocosm experiments for three different agricultural soils. Fluxes were measured during both the summer and winter. Mean ambient levels of GEM ranged between 0.93-1.57 ng m-3. GEM emission fluxes varied diurnally with higher daytime fluxes, driven primarily by solar radiation, and lower and more stable nighttime fluxes, dependent mostly on temperature. GEM fluxes (ng m-2 h-1) were seasonally dependent with net emission during the summer (mean 2.15, range 0.32 to 4.92) and net deposition during the winter (-0.12, range -0.32 to 0.12). Total Hg concentrations in the soil ranged from 17.1 ng g-1 to 127 ng g-1 but were not a good predictor of GEM emissions. GEM flux and soil temperature were correlated over the forest floor, and the corresponding activation energy for Hg emission was ~31 kcal mol-1 using the Arrhenius equation. There were significant differences in GEM fluxes between the habitats with emissions for grass \u3e wetland soil \u3e mowed field \u3e pond \u3e wetland water ≈ forest ≈ agriculture soils. Overall, we demonstrate that these diverse landscapes serve as both sources and sinks for airborne Hg depending on the season and meteorological factors

    Comprehensive chromatographic profiling of cannabis from 23 USA States marketed for medical purposes

    Get PDF
    In this research, cannabis varieties represent 23 USA States were assayed by GC-FID to generate their complex chemical profiles informative for plants clustering. Results showed that 45 cannabinoids and terpenoids were quantified in all plant samples, where 8 cannabinoids and 18 terpenoids were identified. Among organics, Δ9-THC, CBN (cannabinoids) and Fenchol (terpenoid) not only showed the highest levels overall contents, but also were the most important compounds for cannabis clustering. Among States, Washington, Oregon, California and Hawaii have the highest cannabis content. GC-FID data were subjected to PCA and HCA to find (1) the variations among cannabis chemical profiles as a result of growing environment, (2) to reveal the compounds that were responsible for grouping cultivars between clusters and (3) finally, to facilitate the future profile prediction and States clustering of unknown cannabis based on the chemical profile. The 23 cannabis USA States were grouped into three clusters based on only Δ9-THC, CBN, C1 and Fenchol content. Cannabis classification based on GC-profile will meet the practical needs of cannabis applications in clinical research, industrial production, patients’ self-production, and contribute to the standardization of commercially-available cannabis cultivars in USA

    Linear discriminant analysis based on gas chromatographic measurements for geographical prediction of USA medical domestic cannabis

    Get PDF
    Fifty four domestically produced cannabis samples obtained from different USA states were quantitatively assayed by GC-FID to detect 22 active components: 15 terpenoids and 7 cannabinoids. The profiles of the selected compounds were used as inputs for samples grouping to their geographical origins and for building a geographical prediction model using Linear Discriminant Analysis. The proposed sample extraction and chromatographic separation was satisfactory to select 22 active ingredients with a wide analytical range between 5.0 and 1,000 μg/mL. Analysis of GC-profiles by Principle Component Analysis retained three significant variables for grouping job (Δ9-THC, CBN, and CBC) and the modest discrimination of samples based on their geographical origin was reported. PCA was able to separate many samples of Oregon and Vermont while a mixed classification was observed for the rest of samples. By using LDA as a supervised classification method, excellent separation of cannabis samples was attained leading to a classification of new samples not being included in the model. Using two principal components and LDA with GC-FID profiles correctly predict the geographical of 100% Washington cannabis, 86% of both Oregon and Vermont samples, and finally, 71% of Ohio samples
    corecore