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ABSTRACT

Fifty four domestically produced cannabis samples obtained from different USA states were quantitatively
assayed by GC–FID to detect 22 active components: 15 terpenoids and 7 cannabinoids. The profiles of the
selected compounds were used as inputs for samples grouping to their geographical origins and for
building a geographical prediction model using Linear Discriminant Analysis. The proposed sample
extraction and chromatographic separation was satisfactory to select 22 active ingredients with a wide
analytical range between 5.0 and 1,000 mg/mL. Analysis of GC-profiles by Principle Component Analysis
retained three significant variables for grouping job (Δ9-THC, CBN, and CBC) and the modest
discrimination of samples based on their geographical origin was reported. PCA was able to separate many
samples of Oregon and Vermont while a mixed classification was observed for the rest of samples. By
using LDA as a supervised classification method, excellent separation of cannabis samples was attained
leading to a classification of new samples not being included in the model. Using two principal com-
ponents and LDA with GC–FID profiles correctly predict the geographical of 100%Washington cannabis,
86% of both Oregon and Vermont samples, and finally, 71% of Ohio samples.

KEYWORDS

geographical prediction, medical cannabis, linear discriminant analysis, gas chromatography, principal
component analysis

INTRODUCTION

Cannabis and other by-products are gaining popularity due to their reported medicinal
applications [1, 2]. The first medicinal usage originated in the Middle East and Asia was back
in the 6th century BC [2, 3]. Later, cannabis was introduced to Western medicine during the
19th century [1, 2]. Interestingly, cannabis is the most widely cultivated and yet publicly
illegal drug worldwide [1]. Chemically, cannabis is made up of complex blend of constituents
including cannabinoids, terpenoids, flavonoids, carbohydrates, and hydrocarbons [3, 4].
Among the reported constituents of cannabis, cannabinoids and terpenoids are the most
dominant with more than 200 compounds isolated from both classes [5–10]. Moreover, the
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total number of detected or isolated constituents in cannabis
(Cannabis sativa L.) has steadily increased over the last
decades [7–11].

Many advanced chromatographic methods were adopted for
the analysis of as many active ingredients as possible in cannabis
samples [11–13]. Among adopted methods, Gas Chromatog-
raphy–Flame Ionization Detector (GC–FID), and Gas Chro-
matography–Mass Spectrometry (GC–MS) were the most
common methods, and this is likely attributed to the volatility of
the active components in cannabis [10, 11]. Beside GC, classical
Liquid Chromatography (HPLC) and Supercritical Fluid Chro-
matography (SFC) have been used for cannabis analysis [3]. In
our laboratory, more than 50 solutes, both identified and un-
identified, were separated by GC–FID in a reasonable run time
(around 52 min) [12]. The broad and comprehensive chro-
matographic responses of a variety of chemical classes of
cannabis constituents have prompted many investigators to
study the clustering of cannabis samples based on their chemical
profiles (i.e., according to different cultivars and geographical
origins) [3, 12, 14]. Chemical profile monitoring is an essential
aspect in samples’ classification and hence consumer’s protec-
tion, because blending of cannabis of different varieties may not
be declared. As mentioned earlier, conventional analytical
methods that achieve maximum cannabis identification mainly
involve chromatographic detection and quantitation of the
different components (i.e., fingerprint) [3, 6, 14].

Multivariate analysis including Principal Component
Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
were mostly employed in cannabis clustering [12, 14]. Many
published reports indicate that the characteristic chemical
classes for cannabis clustering are the cannabinoids and the
terpenoids [3, 12, 14]. Other organic constituents such as
flavonoids, carbohydrates, and hydrocarbons were of limited
applicability toward cannabis clustering. Among the can-
nabinoids, Δ9-THC is the main compound responsible for
the psychoactive nature of cannabis, while CBN can reflect
the age and storage condition of a sample [15]. CBG was the
first cannabinoid identified and the first biogenic cannabi-
noid formed in cannabis [15]. On the other hand, the typical
scent of cannabis is attributed to specific terpenoids
including myrcene and limonene [12, 15]. Jin et al. proposed
a chemometric classification of Canadian cannabis samples
based on LC and GC measurements using 10 cannabinoids
and 14 terpenoids [14]. Al Bakain and co-workers outlined a
convenient clustering of 23 USA-cannabis samples using
GC–FID measurements and PCA [12]. The results indicated
fair separation of cannabis samples from California and
Oregon, where CBN/Δ9-THC ratio was the most dominant
variable for clustering [12]. In an interesting investigation,
the application of ultra-high-performance SFC was reported
to detect nine cannabinoids CBD, Δ8-THC, THCV, Δ9-
THC, CBN, CBG, THCA-A, CBDA, and CBGA in several
USA-domestic cannabis samples but was not used for
clustering purpose [3].

Although researchers have recognized the practicality of
using cannabinoids and terpenoids as informative indices
toward cannabis clustering, to the best of our knowledge,
there is no published work aimed at predicting the

classification of USA-domestic cannabis samples based on
GC-chromatographic profiles of cannabinoids and terpe-
noids using Linear Discriminant Analysis (LDA). In this
work, quantitative classification of 54 collected cannabis
samples according to geographical origins based on GC-
profiles of 22 components were carried out with the aid of
PCA and LDA. Then, LDA model was used to predict the
possible origin of unknown medical cannabis.

EXPERIMENTAL

Chemicals and reagents

Seven cannabinoids (Δ8-THC, Δ9-THC, THCV, CBC, CBG,
CBL and CBN) and fifteen terpenoids (a-pinene, b-pinene,
a-humulene, b-caryphyllene, a-terpinol, myrcene, limo-
nene, caryophylleneoxide, fenchol, linalool, carveol, terpi-
nolene, cineol, guaiol, and a-bisabolol) were purchased from
Sigma-Aldrich� (St. Louis, MO) and used as markers for
samples classification. The chemical structures of the iso-
lated organics are provided in Table 1. Phenanthrene (>99%
purity) supplied from Sigma-Aldrich� (St. Louis, MO) was
used as internal standard (IS). Ultra pure water (18 MΩ cm�1)
generated by Milli-Q Plus water purification system (Millipore,
Billerica, MA) was used to prepare aqueous solutions and for
dilution purposes.

Collection of cannabis samples

Fifty-four cannabis samples seized by law enforcement from
the states of Washington, Vermont, Ohio, and Oregon were
used in this study. The samples were split as following: 26
(five samples from Washington, six from Vermont, six from
Ohio, and nine from Oregon) and those samples were used
to train the LDA model. Another 28 samples (seven from
each state) were used to test the efficiency of LDA model for
unknown sample classification. The samples were obtained
from seizures by the The Drug Enforcement Administration
(DEA) and/or state agents representing the Domestic
Cannabis Eradication/Suppression Program (DCE/SP) and
submitted to the National Institute on Drug Abuse (NIDA)
for analysis under a national potency monitoring program.
The samples were received in sealed plastic bags and stored
in temperature controlled vault in the Coy Waller Complex
at the University of Mississippi until analyzed.

Extraction of active ingredients and GC
chromatographic separation

Initially, the samples were mixed and ground to get a uni-
form and homogenized matrix. One hundred milligrams
plant samples were each extracted using 3.0 mL methanol–
chloroform (9:1 v/v) containing the internal standard (0.2
mg/mL phenanthrene). The mixtures were then sonicated
for 15 min at room temperature and finally centrifuged.
Phenanthrene was used as a retention time marker and as an
internal standard (IS). All samples were analyzed in dupli-
cate extractions and injections, and the average results of the
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two injections were registered. Before GC analysis of sam-
ples, standard solutions of cannabinoids and terpenoids (0.1
mg/mL in methanol) were injected for qualitative identifi-
cation. Splitless mode injections on the GC were used using
Agilent GC 6890. The column was (DB-5) 30 m length, 0.25
mm internal diameter with a film thickness of 0.25 mm
(J&W Scientific Inc., Folsom, CA). Helium was used as the
carrier gas at a flow rate of 25 cm/s. Detection was achieved
using a Flame Ionization Detector (FID) and the injection
volume was 1.0 mL. The run-to-run repeatability (n 5 12)
and intraday reproducibility (n 5 10) of peak area and
retention time were measured, and RSD values were less
than 1% in all cases. More experimental information is
available in the literature [12].

Multivariate data analysis for samples classification

A data matrix was created from the GC-profiles with rows
representing cannabis samples from different states while
columns containing the contents of the analyzed compo-
nents. Three quantities were created to run PCA and LDA;
X26samples322solutes, X28samples322solutes, and y2631. The main
matrix X26samples322solutes containing the chromatographic
profiles of the 26 samples, received from the four states, was
analyzed by PCA. PCA was applied to mean-centered data
to reduce the dimensionality of the data and to gain visual
insight into natural grouping of cannabis samples according
to the geographic origin. Moreover, the outputs of PCA are
helpful to indicate the best component (solutes) contributing
to samples grouping. PCA was created using two factors (to
build the model) as estimated by leave-one-out cross-vali-
dation methodology [16, 17]. For better sample separation,
LDA assumes class data following a multivariate normal
distribution and seeks to maximize the ratio among class
variance and minimize the ratio within class variance, which
ensures maximum separation among groups [18, 19].
Initially, discriminant classifiers are created using X26sam-

ples322solutes and y2631 (containing the class membership of
states) with the optimum number of factors (i.e., the number
needed to create the LDA model). Classification of the new
samples was achieved by subjecting directly the X28sam-

ples322solutes matrix (i.e., new samples from the four states) to
LDA classifier and then assessing the accuracy of the model.
LDA was performed on the first two factors and the classi-
fication model was created and validated using the leave-
one-out cross-validation methodology [18–20]. PCA was
performed using Chemoface 1.61 software [12, 21] under
Matlab� (Mathworks, 8.6, USA), while LDA was performed
using XLSTAT software (Excel, Microsoft�).

RESULTS AND DISCUSSION

Quantification of cannabinoids and terpenoids in
different samples

Simultaneous quantification of various cannabinoids and
terpenoids in cannabis by GC has been well documented

[15]. Based on the literature methods, GC–FID or MS
detection are the most appropriate methods for cannabis
analysis [15–22]. Derivatization (usually silylation) is
necessary when information about cannabinoid acids is
needed [3]. The total cannabinoid content, i.e., the amount
of total cannabinoids (neutral and decarboxylation of the
acidic forms) is also determined using GC–FID [1, 2]. Fig. 1
displays the chromatographic profiles of some cannabis
samples analyzed by GC–FID without derivatization (total
cannabinoids and terpenoids).

As shown in both chromatograms, the separated com-
ponents were 15 terpenoids (10–30 min) and seven canna-
binoids which appeared over the interval (40–52 min). The
late retention of the cannabinoids is attributed to their polar
nature as indicated from the phenolic group in cannabinoids
(Table 1). Moreover, in all samples, the contents of the can-
nabinoids were much higher than the terpenoids. Among the
cannabinoids, Δ9-THC was present in high levels (13.25%).
In fact, all samples exhibited comparable quantitative GC
profile of the fifteen-terpenoids and the seven-cannabinoids
as fingerprint, which permit the application of numerical
classification methods [3, 12]. The adopted GC–FID meth-
odology presented good linearities (R2 > 0.99) toward all
analytes and over a wide dynamic range 5–1,000 mg/mL.
Moreover, low detection limits (1.0–3.0 mg/mL) were re-
ported, which allowed for accurate quantification of canna-
binoids and terpenoids in the extracts of cannabis samples.
The concentrations (wt%) of the individual components are
provided in Table 2.

Fig. 1. GC–FID chromatograms of cannabis samples of Washing-
ton and Oregon states
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As shown in Table 2, virtually all the 22 selected com-
ponents were found in the samples, except for one sample
(WA2) which was found to be free of most terpenoids and
cannabinoids, especially Δ

9-THC. In general, Δ
9-THC,

CBG, and CBN were the three major components found in
all samples, while the rest of solutes existed in relatively low
contents.

From distribution point of view, the contents of Δ
9-

THC, CBG, and CBN exhibited the largest variability among
all cannabis samples. Moreover, the profiles of separated
components displayed different patterns in terms of the
contents of the terpenoids/cannabinoids (Fig. 1). Hence,
chemometric classification of samples is expected to be
possible. In a similar study, Δ9-THC, CBG, and CBN were
found necessary for cannabis classification [3, 12]. However,
both cannabinoids and terpenoids were reported to be
necessary for USA-domestic produced cannabis samples
using k-means algorithm [3, 12].

Cannabis characterization by PCA

Natural clustering of cannabis produced in different USA
states in the space of the most significance principal com-
ponents can be viewed by PCA. The obtained chromato-
graphic data matrix (26 samples 3 22 solutes) was subjected
to PCA. Two principal components explaining 92.43% of the
total variance in the data were obtained. As shown in
Fig. 2A, cannabis samples of different origin were not
properly grouped from each other. As shown, six Oregon
samples (OR4–OR9) were grouped together but with four

samples of Vermont origin (VT1, VT3–VT5). The first PC,
which explained 75.43% of the total variance, was mainly
contributed by Δ

9-THC (loadings > �0.85). The second PC
(17.00% of the total variance) correlated positively with CBN
(loading > þ0.8). Comparing score and loading plots
(Fig. 2A and B), the dominant variables that separate a
sample(s) from the others can be viewed. The separation of
Vermont samples (VT1, VT3–VT5) and Oregon samples
(OR4–OR9) would be attributed to the higher contents of
Δ
9-THC. However, the higher content of CBN was the

reason for isolation of the samples: OR1, WA1, WA3, and
VT2. The unique isolation of WA2 was attributed to the
absence of many terpenoids and cannabinoids, especially
Δ
9-THC. It is rather interesting to see the limited contri-

bution of the 15 terpenoids for samples clustering.
As shown in Fig. 2B, the main contributing variables to

the first two PCs were Δ9-THC/CBN/CBC and the viability
of using these cannabinoids as variables to discriminate
cannabis samples of different origins was further validated.
Unfortunately, cannabis classification was not fully accom-
plished using only three cannabinoids as indices. The PCA
outputs (Fig. 2A) indicated that the scores of VT6, OH1,
OR3, OH2 samples mixed together and not isolated ac-
cording to their origins. Although Δ

9-THC was essential to
separate six Oregon samples (OR4–OR9) and four Vermont
samples (VT1, VT3–VT5) from the rest of samples, but the
model was not capable to widen the distance among groups.
The same performance was observed for CBN as it separates
two Washington samples but mixed with two samples ob-
tained from Oregon and Vermont states. With a small

Table 2. Chemical profiles (mass%, n 5 3) of terpenoids and cannabinoids in cannabis samples used for PCA and LDA measurements
(Cannabis samples collected from different cultivars sites in four USA states: Washington (WA1–WA5), Vermont (VT1–VT6), Ohio (OH1–

OH6), and Oregon (OR1–OR9))

Solute WA1 WA2 WA3 WA4 WA5 VT1 VT2 VT3 VT4 VT5 VT6 OH1 OH2

a-Bisabolol 0.038 ND 0.076 0.152 0.014 0.017 0.057 0.011 0.217 0.004 0.009 0.223 0.165
a-Humulene 0.008 0.017 0.005 0.009 0.024 0.151 0.021 0.095 0.097 0.033 0.027 0.092 0.121
a-Pinene 0.016 ND 0.008 0.055 0.041 0.392 0.006 ND 0.019 0.065 ND 0.031 ND
a-Terpinol 0.012 ND 0.016 0.026 0.008 0.015 ND ND 0.015 0.004 0.027 0.004 ND
b-Caryphyllene 0.011 ND 0.662 0.007 0.015 0.556 0.065 0.289 0.345 0.136 0.076 0.322 0.334
b-Pinene 0.023 ND 0.049 0.031 0.075 0.169 ND 0.017 ND 0.034 ND ND ND
Caryophylleneoxide 0.029 ND 0.013 0.008 0.018 0.053 0.011 0.012 0.065 0.012 0.024 0.082 0.061
Carveol 0.012 ND 0.007 0.027 0.016 0.021 0.063 0.038 0.024 0.024 0.027 0.019 0.012
Cineol 0.012 ND 0.023 0.006 ND 0.012 ND ND 0.009 0.004 ND 0.005 ND
Fenchol 0.038 0.051 0.012 0.152 0.014 0.102 0.014 0.076 0.217 0.004 0.009 0.223 0.01
Guaiol 0.029 ND 0.09 0.008 0.018 0.013 0.044 0.082 0.023 0.004 0.013 0.015 0.112
Limonene 0.009 0.007 0.031 0.009 0.011 0.021 0.019 0.013 0.047 0.012 ND 0.011 ND
Linalool 0.029 0.033 0.067 0.029 0.026 0.034 0.041 0.023 0.066 0.019 0.015 0.004 ND
Myrcene 0.023 ND 0.049 0.03 0.075 0.169 ND 0.017 ND 0.033 ND ND ND
Terpinolene 0.014 ND 0.067 0.008 0.017 0.034 0.041 0.023 0.066 0.019 0.015 0.023 0.015
Δ
8-THC 0.019 ND 0.021 0.013 0.009 0.034 0.005 0.021 0.017 0.017 ND 0.006 0.012

Δ
9-THC 0.009 ND 12.15 0.007 2.441 11.706 0.026 5.561 7.403 3.392 0.159 0.85 1.801

THCV 0.222 0.006 0.111 0.022 0.012 0.049 0.009 0.041 0.025 0.032 0.008 0.019 0.014
CBC 0.046 ND 0.068 0.038 0.014 0.289 0.175 0.126 0.156 0.015 0.048 0.117 0.117
CBG 0.006 ND 0.232 0.056 0.057 0.256 0.061 0.405 0.736 0.166 0.023 0.051 0.183
CBL 0.014 ND 0.016 0.014 0.012 0.022 0.008 0.006 0.009 ND 0.004 0.012 0.008
CBN 1.539 0.008 0.917 0.313 0.824 0.204 0.159 0.654 0.856 0.166 0.243 0.859 1.297
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loading value (þ0.3), CBC was helpful to separate one
cannabis sample from Washington state (WA2).

It should be stressed that PCA is used for sample or
variable grouping within a previous knowledge on the class
membership of studied samples. Efficient discrimination
among cannabis samples is achieved by LDA as will be
discussed in the following section.

Quantitative cannabis classification by LDA

As an unsupervised clustering method, PCA could not
afford complete geographical classification of cannabis
samples collected from the four USA states. The failure of
PCA would be attributed to the fact that no previous

information on class membership of the samples involved
in the model. Hence, PCA grouped the samples in a lower
dimension space of the original data. Due to the modest
performance of PCA toward geographical classification of
cannabis samples, LDA was selected. LDA, unlike PCA, is a
supervised classification method in which class memberships
of samples should be known before modeling. With the aid of
class information, LDA selects a direction that achieves
minimum within-class distance and maximum separation
among the classes [18–20]. In LDA, the first job is to create a
discriminant function which is created from X26sam-

ples322solutes and y2631 (class membership codes of samples
from states). The next step is to check the classes of new
samples (X28samples322solutes) not involved in the model. The

Fig. 2. PCA outputs for measured GC profiles, A: score plot, and B: loading plot of the 26 cannabis samples and the 22 solute at four USA
states

OH3 OH4 OH5 OH6 OR1 OR2 OR3 OR4 OR5 OR6 OR7 OR8 OR9

0.105 0.101 0.031 0.059 0.007 0.039 0.043 0.039 0.047 0.008 0.176 0.078 0.068
0.037 0.103 0.111 0.238 0.062 0.038 0.019 0.038 0.055 0.008 0.087 0.119 0.112
0.168 0.068 0.044 0.013 0.173 0.074 0.006 0.071 0.009 0.014 0.046 0.023 0.033
0.011 0.016 0.005 0.011 0.008 0.006 ND 0.006 0.005 0.009 0.007 0.006 0.004
0.122 0.013 0.281 0.595 0.148 0.131 0.043 0.131 0.179 0.261 0.247 0.315 0.359
0.026 0.050 0.019 0.021 0.045 0.036 ND 0.035 0.014 0.028 0.018 0.019 0.044
0.038 0.049 0.051 0.086 0.034 0.044 0.011 0.044 0.031 0.058 0.021 0.029 0.037
0.007 0.005 0.003 0.015 0.034 0.024 0.064 0.024 0.031 0.017 0.006 0.039 0.008
0.008 0.037 0.004 0.019 0.017 0.006 0.005 0.006 0.004 0.013 0.006 0.007 0.022
0.004 0.101 0.031 0.019 0.019 0.039 0.043 0.039 0.008 0.071 0.176 0.005 0.068
0.008 0.019 0.015 0.132 0.062 0.007 0.014 0.007 0.015 0.078 0.014 0.034 0.031
0.009 0.047 ND 0.024 0.033 0.011 ND 0.011 0.014 0.018 0.011 0.015 0.035
0.018 0.053 0.017 0.039 0.031 0.02 0.025 0.021 0.014 0.061 0.022 0.032 0.075
0.026 0.049 0.019 0.021 0.045 0.021 ND 0.02 0.014 0.028 0.018 0.019 0.044
0.018 0.052 0.004 0.039 0.016 0.021 0.025 0.02 0.004 0.061 0.021 0.032 0.044
0.013 0.036 0.039 0.039 0.025 0.01 0.006 0.01 0.043 0.047 0.024 0.022 0.066
2.966 13.254 8.162 9.172 0.124 2.84 0.293 2.84 8.411 10.82 5.889 4.419 13.36
0.023 0.101 0.091 0.111 0.055 0.011 0.023 0.011 0.078 0.052 0.032 0.061 0.077
0.175 0.289 0.294 0.399 0.531 0.053 0.123 0.053 0.214 0.017 0.14 0.132 0.225
0.126 0.256 0.406 0.349 0.375 0.176 0.011 0.176 0.264 0.017 0.101 0.415 0.403
0.014 0.08 0.021 0.042 0.042 0.005 0.006 0.005 0.006 0.005 0.006 0.01 0.029
1.211 0.895 1.091 1.258 1.159 0.871 0.251 0.871 0.561 0.916 0.258 0.178 0.438

Table 2. Continued
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outputs of LDA are presented in Fig. 3, where Fig. 4 showed
the level (i.e., relative abundance) of the nine cannabinoids
and terpenoids selected by the LDA model in the four USA
states samples.

It seems that LDA considered more indices to build
classification functions (F1 and F2). As shown in Fig. 3A,
two LDA factors (explained around 61% of total variance)
were used to create the necessary classification functions.
The interesting point in Fig. 3A was the larger number of

constituents (nine components) that were involved in the
LDA classification of the samples in comparison to PCA
(three components) (see Fig. 2B). The larger number of
variables was attributed to the extra information on class
membership involved while building LDA. Fig. 3A showed
that all cannabinoids were significant in LDA prediction
except CBC because it had low loading value in PCA, which
is shown previously in Fig. 2B. Among measured terpenoids,
three terpenes were selected by LDA: caryophylleneoxide,
carveol, and terpinolene. Both caryophylleneoxide and
caravel were highly significant with loading values > þ0.5
for F1 and F2, respectively. It was interesting to notice the
high anticorrelation between carveol and THCV.

The feasibility of using LDA to discriminate the
geographical origin of cannabis samples was assessed. The
LDA outputs of samples collected from Washington, Ver-
mont, Ohio, and Oregon are displayed in Fig. 3B. Compared
with the outputs of PCA, LDA exhibited more sharp classes
among the 26 samples. LDA was also convenient to isolate
Washington samples from others. Ohio samples were also
isolated away from Washington and Vermont samples. Only
few samples from Oregon seem to be close to Vermont and
Ohio samples. Variables selection by forward stepwise-cri-
terion was adopted to find the most appropriate variables for
LDA. Analysis indicated that Δ9-THC is the the most sig-
nificant variable for samples discrimination regarding
geographical origins. The earlier results were in agreement
with LDA and PCA results as Δ9-THC was highly related to
the first classification function F1 and first principal
component PC1, respectively. Internal validation of LDA
using two factors indicated a 100% accuracy of classification,
i.e., all samples were correctly classified to their geographical
origins. Therefore, the classification performance of LDA
was further assessed in the next section by classification of
28 new cannabis samples not involved in building the model
in order to check the power of this model.

LDA-model validation

To validate our LDA model, new 28 cannabis samples (seven
from each state) not involved in building the model were
applied and the classification accuracy is provided in Table 3.

Fig. 3. LDA plots for the discrimination of 26 cannabis samples
based on GC–FID measurements, A: variables selection and B:

samples classification

Fig. 4. Relative abundance of the nine cannabinoids and terpenoids selected by LDA model in the four USA states samples
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Classification accuracy was evaluated as the percentage
of correctly classified samples by LDA in a given class
compared to the total number of samples in that class. As
indicated in Table 3, LDA has acceptable classification ac-
curacy for new samples according to their geographical or-
igins. The best result was reported for Washington samples
as all samples were correctly classified with 100% accuracy.
For seven new samples from Ohio, the accuracy of the
classification was rather acceptable (86%) as only one sample
out of seven was incorrectly classified with Oregon samples
(Fig. 3B). The same discussion holds true for LDA classifi-
cation for Vermont samples, one sample was misclassified
with Oregon samples. For Oregon samples, two samples out
of seven were incorrectly classified with a final accuracy of
71%. These misclassified samples were specified to Ohio and
this was expected considering the high closeness between
Oregon and Ohio samples as indicated in Fig. 3B. The
comparable chemical profiles of some samples obtained
from Oregon/Vermont/Ohio would retard the classification
efficiency of LDA.

But in general, LDA along with GC–FID profiles of
cannabis samples was found practical for classification and
prediction of samples according to their geographical ori-
gins.

CONCLUSION

Chemical profiles obtained by GC–FID along with LDA
were found efficient for geographical classification of USA-
domestic cannabis samples and for predicting the possible
origin of unknown cannabis samples. As an unsupervised
classification method, PCA was of limited application for
classification of 26 cannabis samples to their geographical
sites due to the absence of classification markers while
building the model. As a supervised method, LDA was
created with a previous knowledge for class member of
samples. LDA was efficient for selecting more components
(Δ8-THC, Δ9-THC, THCV, CBG, CBL, CBN, terpinolene,
carveol, and caryophylleneoxide). Reasonable classification
of 28 new samples according to their geographical origins
was achieved using GC–FID–LDA with accuracies of 100,
86, and 71% for Washington, Ohio/Vermont, and Oregon
states, respectively.
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