2,057 research outputs found

    A rigid body model for the assessment of glenohumeral joint mechanics: Influence of osseous defects on range of motion and dislocation

    Get PDF
    © 2016. The purpose of this study was to employ subject-specific computer models to evaluate the interaction of glenohumeral range-of-motion and Hill-Sachs humeral head bone defect size on engagement and shoulder dislocation. We hypothesized that the rate of engagement would increase as defect size increased, and that greater shoulder ROM would engage smaller defects. Three dimensional computer models of 12 shoulders were created. For each shoulder, additional models were created with simulated Hill-Sachs defects of varying severities (XS=15%, S=22.5%, M=30%, L=37.5%, XL=45% and XXL=52.5% of the humeral head diameter, respectively). Rotational motion simulations without translation were conducted. The simulations ended if the defect engaged the anterior glenoid rim with resultant dislocation. The results showed that the rate of engagement was significantly different between defect sizes (0.00

    Combining Slaughterhouse Surveillance Data with Cattle Tracing Scheme and Environmental Data to Quantify Environmental Risk Factors for Liver Fluke in Cattle.

    Get PDF
    Liver fluke infection causes serious disease (fasciolosis) in cattle and sheep in many regions of the world, resulting in production losses and additional economic consequences due to condemnation of the liver at slaughter. Liver fluke depends on mud snails as an intermediate host and infect livestock when ingested through grazing. Therefore, environmental factors play important roles in infection risk and climate change is likely to modify this. Here, we demonstrate how slaughterhouse data can be integrated with other data, including animal movement and climate variables to identify environmental risk factors for liver fluke in cattle in Scotland. We fitted a generalized linear mixed model to the data, with exposure-weighted random and fixed effects, an approach which takes into account the amount of time cattle spent at different locations, exposed to different levels of risk. This enabled us to identify an increased risk of liver fluke with increased animal age, rainfall, and temperature and for farms located further to the West, in excess of the risk associated with a warmer, wetter climate. This model explained 45% of the variability in liver fluke between farms, suggesting that the unexplained 55% was due to factors not included in the model, such as differences in on-farm management and presence of wet habitats. This approach demonstrates the value of statistically integrating routinely recorded slaughterhouse data with other pre-existing data, creating a powerful approach to quantify disease risks in production animals. Furthermore, this approach can be used to better quantify the impact of projected climate change on liver fluke risk for future studies

    Ankle fracture internal fixation performed by cadaveric simulation-trained versus standard-trained orthopaedic trainees : a preliminary, multicentre randomized controlled trial

    Get PDF
    Aims: Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. Methods: We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs. Results:Overall, 139 ankle fractures were fixed by 28 postgraduate year three to five trainee surgeons (mean age 29.4 years; 71% males) during ten months' follow-up. Under the intention-to-treat principle, a technically superior fixation was performed by the cadaveric-trained group compared to the standard-trained group, as measured on the first postoperative radiograph against predefined acceptability thresholds. The cadaveric-trained group used a lower intraoperative dose of radiation than the standard-trained group (mean difference 0.011 Gym2, 95% confidence interval 0.003 to 0.019; p = 0.009). There was no difference in procedure time. Conclusion: Trainees randomized to cadaveric training performed better ankle fracture fixations and irradiated patients less during surgery compared to standard-trained trainees. This effect, which was previously unknown, is likely to be a consequence of the intervention. Further study is required

    Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event.

    Get PDF
    The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail

    Observational evidence of magnetic reconnection in the terrestrial bow shock transition region

    Get PDF
    We report evidence of magnetic reconnection in the transition region of the terrestrial bow shock when the angle between the shock normal and the immediate upstream magnetic field is 65 degrees. An ion-skin-depth-scale current sheet exhibits the Hall current and field pattern, electron outflow jet, and enhanced energy conversion rate through the nonideal electric field, all consistent with a reconnection diffusion region close to the X-line. In the diffusion region, electrons are modulated by electromagnetic waves. An ion exhaust with energized field-aligned ions and electron parallel heating are observed in the same shock transition region. The energized ions are more separated from the inflowing ions in velocity above the current sheet than below, possibly due to the shear flow between the two inflow regions. The observation suggests that magnetic reconnection may contribute to shock energy dissipation
    corecore