1,276 research outputs found

    Experimental Testing and Modeling of 5 kW Oil-Free Open Drive Scroll Expander Using R245fa

    Get PDF
    Organic Rankine Cycles (ORC) are thermodynamic power cycles designed to generate work from low temperature sources, typically between 80 °C to 270 °C.  The low temperature heat input makes this technology attractive for applications in waste heat recovery from industrial processes, exhaust gas from diesel engines, solar systems, geothermal systems, and others.  The expander has the greatest effect on increasing the efficiency of an ORC. The operating  conditions that the expander is subjected to are directed related to its efficiency.  The performance of a 5 kW scroll expander with a displacement of 73.6 cm3 per revolution, operating at speeds from 500 to 3600 rpm, and using R245fa as the working fluid in a traditional Organic Ranking cycle is experimentally investigated In this paper. Tests were conducted varying the mass flow rate of the working fluid and varying source temperatures, while measuring the effective expander power production and the isentropic efficiency.  The experimental data was then used to develop a model of the scroll expander. Using this model, thermodynamic simulations were carried out for applications similar to exhaust gas waste heat recovery from internal combustion engines

    Climatic Influences on Summer Use of Winter Precipitation by Trees

    Get PDF
    Trees in seasonal climates may use water originating from both winter and summer precipitation. However, the seasonal origins of water used by trees have not been systematically studied. We used stable isotopes of water to compare the seasonal origins of water found in three common tree species across 24 Swiss forest sites sampled in two different years. Water from winter precipitation was observed in trees at most sites, even at the peak of summer, although the relative representation of seasonal sources differed by species. However, the representation of winter precipitation in trees decreased with site mean annual precipitation in both years; additionally, it was generally lower in the cooler and wetter year. Together, these relationships show that precipitation amount influenced the seasonal origin of water taken up by trees across both time and space. These results suggest higher turnover of the plant-available soil-water pool in wetter sites and wetter years

    Seasonal Origins of Soil Water Used by Trees

    Get PDF
    Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source for midsummer transpiration in any of the three sampled tree species. Beech and oak mostly used winter precipitation, whereas spruce used water of more diverse seasonal origins. Even in the same plots, beech consistently used more winter precipitation than spruce, demonstrating consistent niche partitioning in the rhizosphere. All three species\u27 xylem water isotopes indicate that trees used more winter precipitation in drier regions, potentially mitigating their vulnerability to summer droughts. The widespread occurrence of winter isotopic signatures in midsummer xylem implies that growing-season rainfall may have minimally recharged the soil water storages that supply tree growth, even across diverse humid climates (690–2068 mm annual precipitation). These results challenge common assumptions concerning how water flows through soils and is accessed by trees. Beyond these ecological and hydrological implications, our findings also imply that stable isotopes of δ18O and δ2H in plant tissues, which are often used in climate reconstructions, may not reflect water from growing-season climates

    Stability Walls in Heterotic Theories

    Full text link
    We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilization.Comment: 37 pages, 4 figure

    Testing the proposed link between cosmic rays and cloud cover

    Full text link
    A decrease in the globally averaged low level cloud cover, deduced from the ISCCP infra red data, as the cosmic ray intensity decreased during the solar cycle 22 was observed by two groups. The groups went on to hypothesise that the decrease in ionization due to cosmic rays causes the decrease in cloud cover, thereby explaining a large part of the presently observed global warming. We have examined this hypothesis to look for evidence to corroborate it. None has been found and so our conclusions are to doubt it. From the absence of corroborative evidence, we estimate that less than 23%, at the 95% confidence level, of the 11-year cycle change in the globally averaged cloud cover observed in solar cycle 22 is due to the change in the rate of ionization from the solar modulation of cosmic rays

    Spatial Variation in Throughfall, Soil, and Plant Water Isotopes in a Temperate Forest

    Get PDF
    Studies of stable isotopes of water in the environment have been fundamental to advancing our understanding of how water moves through the soil‐plant‐atmosphere continuum; however, much of this research focuses on how water isotopes vary in time, rather than in space. We examined the spatial variation in the δ18O and δ2H of throughfall and bulk soil water, as well as branch xylem and bulk leaf water of Picea abies (Norway Spruce) and Fagus sylvatica (Beech), in a 1 ha forest plot in the northern Alps of Switzerland. Means and ranges of water isotope ratios varied considerably among throughfall, soil, and xylem samples. Soil water isotope ratios were often poorly explained by soil characteristics and often not predictable from proximal samples. Branch xylem water isotope values varied less than either soil water or bulk leaf water. The isotopic range observed within an individual tree crown was often similar to that observed among different crowns. As a result of the heterogeneity in isotope ratios, inferences about the depth of plant root water uptake drawn from a two end‐member mixing model were highly sensitive to the soil sampling location. Our results clearly demonstrate that studies using water isotopes to infer root water uptake must explicitly consider how to characterize soil water, incorporating measures of both vertical and lateral variation. By accounting for this spatial variation and the processes that shape it, we can improve the application of water isotopes to studies of plant ecophysiology, ecohydrology, soil hydrology, and paleoclimatology

    NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    Get PDF
    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b

    Development and Evaluation of Low-Cost CO2 Sensors for Buildings

    Get PDF
    There is a significant opportunity to improve building energy efficiency and indoor environmental quality by accurately monitoring CO2 levels. However, current CO2 sensors tend to be expensive or require regular recalibration. This work presents research related to the initial development and evaluation of two novel CO2 sensors based on chemiresistive and resonant mass sensing techniques. Prototype sensors were assessed in a bench-top test chamber at temperatures, humidity levels, and CO2 concentrations, typical of indoor environments. Under these conditions, prototype sensors required only 60 mW of power, or less. Further, each sensor was developed to have a footprint of less than 25 mm2 and a cost of less than $50. Given the relative low cost, small size, and potential for low power consumption, these sensors may serve as an attractive alternative to the commercial CO2 sensors that are currently available

    Incidence of and predictors for antiseizure medication gaps in Medicare beneficiaries with epilepsy: a retrospective cohort study.

    Get PDF
    BACKGROUND For the two-thirds of patients with epilepsy who achieve seizure remission on antiseizure medications (ASMs), patients and clinicians must weigh the pros and cons of long-term ASM treatment. However, little work has evaluated how often ASM discontinuation occurs in practice. We describe the incidence of and predictors for sustained ASM fill gaps to measure discontinuation in individuals potentially eligible for ASM withdrawal. METHODS This was a retrospective cohort of Medicare beneficiaries. We included patients with epilepsy by requiring International Classification of Diseases codes for epilepsy/convulsions plus at least one ASM prescription each year 2014-2016, and no acute visit for epilepsy 2014-2015 (i.e., potentially eligible for ASM discontinuation). The main outcome was the first day of a gap in ASM supply (30, 90, 180, or 360 days with no pills) in 2016-2018. We displayed cumulative incidence functions and identified predictors using Cox regressions. RESULTS Among 21,819 beneficiaries, 5191 (24%) had a 30-day gap, 1753 (8%) had a 90-day gap, 803 (4%) had a 180-day gap, and 381 (2%) had a 360-day gap. Predictors increasing the chance of a 180-day gap included number of unique medications in 2015 (hazard ratio [HR] 1.03 per medication, 95% confidence interval [CI] 1.01-1.05) and epileptologist prescribing physician (≥25% of that physician's visits for epilepsy; HR 2.37, 95% CI 1.39-4.03). Predictors decreasing the chance of a 180-day gap included Medicaid dual eligibility (HR 0.75, 95% CI 0.60-0.95), number of unique ASMs in 2015 (e.g., 2 versus 1: HR 0.37, 95% CI 0.30-0.45), and greater baseline adherence (> 80% versus ≤80% of days in 2015 with ASM pill supply: HR 0.38, 95% CI 0.32-0.44). CONCLUSIONS Sustained ASM gaps were rarer than current guidelines may suggest. Future work should further explore barriers and enablers of ASM discontinuation to understand the optimal discontinuation rate
    corecore