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Abstract 

 

Studies of stable isotopes of water in the environment have been fundamental to advancing 

our understanding of how water moves through the soil-plant-atmosphere continuum; 

however, much of this research focuses on how water isotopes vary in time, rather than in 

space. We examined the spatial variation in the 
18

O and 
2
H of throughfall and bulk soil 

water, as well as branch xylem and bulk leaf water of Picea abies (Norway Spruce) and 

Fagus sylvatica (Beech), in a 1 ha forest plot in the northern Alps of Switzerland. Means and 

ranges of water isotope ratios varied considerably among throughfall, soil, and xylem 

samples. Soil water isotope ratios were often poorly explained by soil characteristics and 

often not predictable from proximal samples. Branch xylem water isotope values varied less 

than either soil water or bulk leaf water. The isotopic range observed within an individual tree 

crown was often similar to that observed among different crowns. As a result of the 

heterogeneity in isotope ratios, inferences about the depth of plant root water uptake drawn 

from a two end-member mixing model were highly sensitive to the soil sampling location. 

Our results clearly demonstrate that studies using water isotopes to infer root water uptake 

must explicitly consider how to characterize soil water, incorporating measures of both 

vertical and lateral variation. By accounting for this spatial variation and the processes that 

shape it, we can improve the application of water isotopes to studies of plant ecophysiology, 

ecohydrology, soil hydrology, and paleoclimatology.  

 

Key words 

 

ecohydrologic separation, hydrogen isotopes, leaf water enrichment, mixing models, oxygen 

isotopes, root water uptake, spatial autocorrelation 

  



 

 

 

This article is protected by copyright. All rights reserved. 

Introduction 

Tracing stable isotopes of water (
18

O/
16

O
 
and 

2
H/H) through the soil-plant-atmosphere 

continuum has been essential for addressing many ecohydrological questions. Recent 

applications include studies of the transit times and flow paths of water in soils (Sprenger, 

Seeger, & Blume, 2016b), the depth of plant root water uptake (Goldsmith et al., 2012), leaf 

physiological response to climate (Bögelein, Thomas, & Kahmen, 2017), the relative roles of 

evaporation versus transpiration in returning water to the atmosphere (Jasechko et al., 2013), 

and the reconstruction of past climate conditions (Saurer, Spahni, Frank, & Joos, 2014).  

 

Addressing such questions relies on understanding the isotopic fractionation and mixing 

processes that act on water as it moves through an ecosystem (Dawson, Mambelli, 

Plamboeck, Templer, & Tu, 2002). Precipitation is subject to evaporative fractionation, 

isotopic exchange, and mixing as it passes through the canopy (Allen, Keim, & McDonnell, 

2015). This throughfall is further altered as it infiltrates into the soil and variably mixes with 

existing pools of soil water or becomes isotopically enriched by evaporation from the soil 

surface (Sprenger, Leistert, & Gimbel, 2016a, Benettin et al., 2018). Water may then be taken 

up by plant roots at different locations in the soil, a process that generally occurs without 

fractionation (but see Ellsworth & Williams, 2007; Zhao, Wang, Cernusak, & Liu, 2016). 

Water that reaches the leaves from the plant xylem is subject to evaporative enrichment, 

while some of the remaining leaf water is incorporated into photosynthetic assimilates.    

 

Much of our understanding of how water isotopes move through ecosystems is based on 

temporal sampling – studying how water isotopes vary at a given location as a function of 

time. On average, the studies used in a recent synthesis on plant root water uptake from soil 

and groundwater measured the water isotopes at 8 different time points, with 4 replicate 

individuals of 3 different plant species and 3 replicate soil profiles (n = 76 studies from 2010-

2016; Evaristo & McDonnell, 2017). While many of these studies contrasted locations (e.g. 

ridge top, slope and valley bottom; Gaines, Stanley, Meinzer, & McCulloh, 2016), none of 

them explicitly measured the spatial variation in soil or plant water isotopes within a given 

location.  

 

Explicitly measuring the spatial variation in water isotopes is critical to understanding the 

scales at which patterns occur, as well as for revealing the processes that drive those patterns 
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(e.g., Vachaud, de Silans, Balabanis, & Vauclin, 1985). Studies of spatial variation are often 

based on the premise that two observations made close to one another in space are more 

likely to be similar than two observations made farther apart. The presence and scale of these 

spatial autocorrelations have important implications for both study design and interpretation 

of results (Fortin, Drapeau, & Legendre, 1989; Hurlbert, 1984; Legendre, 1993). For 

instance, how do we know whether changes in the depth of plant root water uptake inferred 

from stable water isotopes at a given site are representative of that site? Moreover, how do 

we whether the depth of plant water uptake at one site is representative of other neighboring 

sites? Or perhaps most importantly, how can we use spatial variation to better understand the 

processes that lead to differences in the depth of plant water uptake?  

 

There has been considerable research studying large-scale spatial patterns in the isotopes of 

precipitation (Bowen, 2003), surface water (Brooks, Gibson, Birks, & Weber, 2014), and 

groundwater (West, February, & Bowen, 2014), as well as predicting spatial patterns of leaf 

water isotopes based on precipitation isotopes (West, Sobek, & Ehleringer, 2008). Mapped 

water isotope patterns, often referred to as ‘isoscapes,’ have led to novel insights into 

hydrological processes and served as important tools for visualization (Bowen, 2010). 

However, our understanding of fine-scale spatial patterns of water isotopes as they move 

through an ecosystem, beyond their variation as a function of soil depth, remains limited. 

 

We studied the spatial variation in stable isotopes of throughfall, bulk soil, branch xylem and 

bulk leaf water in a 1 ha forest plot in the northern Alps of Switzerland. Understanding the 

spatial variation in water isotopes along the soil-plant-atmosphere continuum can inform 

many different applications of water isotopes, particularly with respect to uncovering 

processes that cannot be inferred through temporal studies alone. Our objectives were to 

describe 1) how water isotope ratios vary among these different pools, 2) the extent to which 

the variation within and among pools is correlated in space, and 3) the underlying processes 

that structure that variation by studying relationships between soil characteristics and soil 

water isotope ratios.  

 

Methods 

 

Site Description 
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The study was carried out in a 1 ha plot established near Leissigen, Switzerland (SW corner: 

46.651˚, 7.754˚; 722 m asl). The site is a northwest-facing (ca. 290°) forest slope (25 ± 6°). It 

is dominated by Fagus sylvatica L. (Beech) and Picea abies (L.) H. Karst. (Norway Spruce). 

Leaf area index was determined at the time of sampling from 41 random locations within the 

site under diffuse light conditions with alternating open sky and closed canopy readings 

facing due north at 1.5 m height with a 45 ° view cap  (LAI-2000; LI-COR, Lincoln 

Nebraska). LAI was estimated at 4.2 m
2
 m

-2
, although this is uncorrected for clumping and 

leaf shape and may be an underestimate (Cutini, Matteucci, & Mugnozza, 1998). The site is 

actively managed for commercial timber; the last harvests were carried out between 2006 and 

2010 and removed ca. 10% of the standing biomass (Braun; pers. comm.). The soils are 

classified as vertic cambisols. Persistent seeps are found in several places. Mean annual 

precipitation at the site is 1268 ± 138 mm and is relatively well-distributed throughout the 

year; mean monthly temperatures range from -0.6 to 17.6 °C (Meteotest, Bern, Switzerland).  

 

Sampling 

 

To assess the spatial variation in throughfall and soil water isotopes, we established 150 fixed 

sampling points at random locations within the plot (Figure 1). We placed a throughfall 

collector at each location on 1 July 2015. Collectors consisted of a 15 cm diameter funnel 

sealed to a 50 ml collection vial nested in the soil. Evaporation was prevented by using a 

layer of mineral oil at least 1 cm thick. Two open precipitation collectors were 

simultaneously established in a field about 400 m from the site. 

 

We collected precipitation, stream, throughfall, and soil water samples on 14 July 2015. 

Event precipitation and throughfall water originated from small events on 5 (0.9 mm) and 7 

(2.5 mm) July. Prior to that, the most recent precipitation was a 6-day event (77 mm) that 

began on 18 June. Long-term (1970-2015) precipitation patterns were determined from 

monthly data collected ca. 30 km from Leissigen in Belp. A single water sample was 

collected from a stream located ca. 50 m from the plot.  Soil samples integrating 0-10 cm 

depth below the soil surface were collected (n = 150), as were additional samples from 40-50 

cm depth wherever soils were not too rocky or shallow (n = 8). All samples were 

immediately sealed in glass vials and placed in coolers for transport. On the same day, we 

sampled paired branch and leaf water samples randomly from 23 canopy emergent 
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individuals of P. abies and 35 individuals of F. sylvatica. The diameters at breast height (1.3 

m) of individual P. abies (56 ± 11 cm) and F. sylvatica (47 ± 7 cm) that were sampled were 

similar. For three individuals of each of these species, we also assessed intra-crown 

variability by sampling five separate branches. Fully sunlit branches were collected with pole 

pruners using a technician suspended below a helicopter between 14:00 and 16:00. Branches 

1-2 m in length were dropped to the ground. Bark and cambium were stripped from fully 

suberized branches, then xylem samples and leaf tissue from the same branches were 

immediately sealed in glass vials.    

 

Stable Isotope Analysis 

 

Soil, branch, and leaf water samples were extracted using cryogenic vacuum distillation 

following the methods of West, Patrickson, & Ehleringer (2006) in an 80 °C water bath with 

a liquid nitrogen cold trap at a pressure < 50 Pa. Soil water samples were extracted for 4 

hours, while branch and leaf water were extracted for 2 hours. Following extraction, samples 

were analyzed for 
18

O and 
2
H isotope ratios by means of isotope ratio mass spectrometry 

using a high temperature conversion/elemental analyzer (TC/EA) linked to a Delta Plus XP 

MS via a Conflo III interface (Thermo Fisher Scientific, Bremen, Germany). Isotope ratios 

are expressed in per mil (‰) as:  

 

 

 

where N represents the heavy isotope of the element E, and R is the ratio of the heavy to the 

light isotope (
18

O/
16

O
  
or 

2
H/H). Two calibration standards were used to adjust the ratios 

relative to V-SMOW. Long-term precision of the instrument is 0.4‰ for 
18

O and 1.7 ‰ for 


2
H. All sample extractions and analyses were carried out at the Paul Scherrer Institute. 

 

Soil Analysis  

 

To explore sources of variation in soil water isotopes, additional soil samples (n = 30) were 

collected at 10 cm depth from a random subset of the soil-water isotope sampling locations 

for determination of soil moisture, texture and chemical properties. Litter depth was 

dNE =
Rsample

Rs tandard

-1
æ

è
ç

ö

ø
÷*1000
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determined at each location with a ruler. Percent clay, silt and sand in each sample were 

determined using a sedimentation method (Swiss Agricultural Research Institute Reference 

Method: KOM), while percent organic matter was determined using chromic acid wet 

oxidation (Swiss Agricultural Research Institute Reference Method: Corg). The total cation 

exchange capacity (CEC), as well as percent K, Ca, Mg, Na and H, were determined using 

methods appropriate for the soil pH (Swiss Agricultural Research Institute Reference 

Method: KUKI-KUKII). Soil analyses were carried out at Sol Conseil (Gland, Switzerland) 

and additional details on methods are found in Flish et al. (2017).  

 

Statistical Analysis 

 

Statistical analysis was carried out using R 3.3.2 (R Core Team, 2016) and MATLAB 2015a 

(Mathworks, Massachusetts, USA). For the purposes of spatial analyses, trees where intra-

tree variation was quantified were summarized with a single mean value. To test for the 

presence of spatial autocorrelation in the throughfall and precipitation samples, we calculated 

a global Moran’s I using the moran.test function in the R package “spdep.” To do so, we first 

constructed a matrix of points that are the nearest neighbors to one another in space via using 

the knearneigh (k nearest neighbors) function. The results were robust for changes in k (the 

number of neighbors to be returned). We then attached spatial weights to the matrix using the 

nb2listw function and performed the Moran’s I test. To test how the difference between 

samples changes as a function of the distance between them, we then constructed variograms 

for each source. To do so, we used the variogram function in the R package “gstat” using 10 

evenly spaced bins, with widths of 4.6 m, up to a cutoff lag distance fixed at 1/3 of the 

maximum point-to-point distance (46 m). Bin counts ranged from 61 to 719 and the effects of 

different bin sizes are described in Supplementary Table 1. Distances were defined with 

respect to the hillslope plane (i.e., not projected to a horizontal plane). A spherical function 

was then fit to the variograms using fit.variogram to determine the nugget, range and sill. 

Practically speaking, the range indicates the maximum distance at which sample values are 

autocorrelated, the nugget serves as an indication of small-scale variation that is not 

explained by proximity, and the partial sill is maximum variance that is explainable by 

proximity (equal to the total variance minus the nugget value). If two samples were collected 

from locations that are infinitely close to each other and they had the same value, the 

associated nugget would be zero; if their values were only as similar to each other as they 

were to values from more distant locations, the nugget effect would be maximal and there 
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would be no spatial autocorrelation (partial sill of zero). Variogram models were used to 

interpolate by ordinary kriging and map spatial heterogeneity of 
18

O in throughfall and 

shallow soil water. Further information on these methods can be found in Bivand, Pebesma, 

& Gómez-Rubio (2013).  

 

To study the depth at which plants take up water, we carried out a series of exercises where 

we solved for the proportional contributions of shallow and deep soil water to tree xylem 

water using a standard two end-member mixing model. We then studied how spatial 

heterogeneity in the end members would affect the interpretation of these results. In the first 

exercise, a distribution of solutions was obtained by solving the mixing model for each tree 

paired with the nearest deep and shallow soil water sample. In the second exercise, a 

distribution of solutions was calculated for each tree by solving the mixing model for every 

possible combination of shallow and deep soil water from all samples. Here, the results are 

presented as a function of tree diameter at breast height to explore the effects of tree size on 

the proportional contributions of shallow and deep soil water. In the third exercise, a 

distribution of solutions was obtained by assuming a hypothetical representative sampling 

approach for a study of plant water uptake at a hypothetical site. To do so, we first calculated 

the average number of xylem water samples and soil profiles used in the 2010-2016 studies 

reviewed within (Evaristo & McDonnell, 2017). The average study sampled four trees and 

used three independent soil sampling locations. We applied this to our sampling and 

calculated the proportion of shallow soil-water uptake for the means of four xylem samples of 

each of our two species with three shallow and three deep soil samples, all randomly selected 

from observed data via Monte-Carlo iteration (10,000 runs). The spread of the resultant 

distributions were interpreted as a measure of the sensitivity of source-water attribution (i.e. 

shallow vs. deep) to the spatial heterogeneity of the soil water samples used as end members. 

To study how sample size affects the uncertainty in soil, xylem, and bulk leaf water isotope 

samples, we performed Monte-Carlo iterations (1,000 runs) to subsample our observed data 

at different sample sizes until we arrived at n – 1 samples.  

 

To study the factors that may shape variation in soil water isotopes, we studied how the 

difference of the mean of deep soil water isotope samples from individual shallow soil water 

isotope samples (Δshallow-deep soil water) varied as a function of soil characteristics. As soil 

characteristics may be correlated (i.e. collinearity), we first assessed the pairwise correlation 
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of potential predictors. Based on these results, we used percent clay, soil moisture, organic 

matter and their interactions as predictors in a multiple linear regression model, as well as in 

a generalized least squares model accounting for spatial autocorrelation, then compared these 

models using the Akaike Information Criterion (AIC).   

 

All results will be made available through Dryad Digital Data Repository upon acceptance of 

the manuscript. 

Results 

The average monthly 
2
H of precipitation varied from -97.9 ‰ in February to -42.2 ‰ in 

July, while 
18

O varied from -12.8 ‰ to -6.4 ‰ at a nearby long-term monitoring station 

(Supplementary Table 2; [FOEN, 2016]). Relative to the global meteoric water line 

(GMWL: 
2
H = 8*

18
O+10), the local meteoric water line (LMWL) had a similar slope and 

intercept (
2
H = 8.0*

18
O+9.3).  

 

The relationships between 
18

O and 
2
H of water isotopes in precipitation, throughfall, soil 

and plants are presented in Figure 2 and Table 1. The average 
18

O (-3.3 ± 0.8 ‰) and 
2
H 

(-18.9 ± 2.7‰) of throughfall collected prior to the soil and plant sampling were generally 

enriched  compared to the 
18

O (-4.1 ‰) and 
2
H (-22.6 ‰) of precipitation collected at an 

open location about 400 m from the site, presumably due to canopy interception and 

evaporation. The 
18

O and 
2
H of shallow (0-10 cm) soil waters were depleted compared to 

throughfall, presumably because they contain precipitation from earlier months, and there 

was no significant relationship between throughfall and soil water isotope ratios (OLS 

regression; p > 0.1). Deeper (40-50 cm) soil water isotopes were isotopically similar to that of 

stream water. The mean 
18

O and 
2
H of water in P. abies branches were significantly 

enriched compared to those in F. sylvatica branches (t-test; p < 0.01), suggesting a deeper 

root water uptake for F. sylvatica. Moreover, F. sylvatica demonstrated significantly higher 

midday leaf water enrichment (∆
18

Oleaf-branch and ∆
2
Hleaf-branch) compared to P. abies (t-test; p 

< 0.001). The unique canopy structure of each species may lead to differences in biophysical 

conditions (e.g., the ratio of ambient air vapor pressure to leaf intracellular vapor pressure) 

that would explain the differences in leaf water enrichment (Bögelein, Thomas, & Kahmen, 

2017).  
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The variability between and within pools of water is presented for 
18

O in Figure 3 and for 

both isotopes in Table 1. The range of water isotopes at 0-10 cm soil depth (10.7 ‰ for 
18

O) 

far exceeded that of the throughfall event (4.2 ‰ for 
18

O), 40-50 cm soil water (3.3 ‰ for 


18

O), or branch xylem water (4.2 ‰ for 
18

O). P. abies demonstrated an overlapping and 

larger range than F. sylvatica in 
18

. Notably, the range of branch xylem water within an 

individual tree crown of P. abies and F. sylvatica was nearly as large as the range among all 

the trees sampled in the plot. For instance, the range in branch water isotopes of one of the P. 

abies trees was 3.2 ‰ for 
18

O and 11.0 ‰ for 
2
H, comparable to 4.2 ‰ for 

18
O and 21.3 

‰ for 
2
H among all other sampled individuals of P. abies. For both species, the range of 

bulk leaf water isotopes was higher than the respective range of their branch xylem water 

isotopes. Similar to branch water isotopes, the range of 
18

O and 
2
H of leaf water within an 

individual was often similar to that among all other sampled individuals.  

 

Variograms and statistical measures of spatial variation, used to better understand the scales 

at which similarity in isotope ratios are (or are not) a function of proximity, are presented in 

Figure 4 and Table 2. The 
18

O of throughfall demonstrated significant spatial 

autocorrelation (Moran’s I; p < 0.001) up to a distance of 13.9 m. The 
18

O of soil water (10 

cm depth) also demonstrated significant spatial autocorrelation (Moran’s I; p < 0.001) up to a 

distance of 6.2 m. However, there is very limited visual evidence for convergence towards 

zero semivariance, suggesting that there is substantial variation unaccounted for in the 

sampling. This is despite fitted variogram models indicating that soil water nugget effects 

were minor (Table 2); the observation of these nugget effects may depend on variogram 

assumptions (see Supplementary Table S1). Ultimately, these results imply that individual 

soil or throughfall samples may not be representative of proximal locations. Variograms and 

measures of spatial variation are qualitatively similar for 
2
H, although the ranges are longer.  

 

The differences between the spatial patterns of throughfall and shallow soil water, as well as 

how they compare to xylem water can be observed from interpolated 
18

O maps (Figure 5; 

also see Figure S1). Throughfall 
18

O does not correlate with soil water 
18

O (p > 0.1). 

Similarly, there is no visual evidence for a relationship between soil and xylem water 
18

O.   

 

Soil water isotope ratios, here reported as the deviation of each shallow soil water isotope 

ratio from the mean deep soil water isotope ratio (∆shallow-deep soil water), varied significantly as a 



 

 

 

This article is protected by copyright. All rights reserved. 

function of soil moisture and soil texture (Figure S2). For both ∆
18

Oshallow-deep soil water and 

∆
2
Hshallow-deep soil water, the most parsimonious model included soil moisture and percent clay, 

but not their interaction (F2,26 > 5, p < 0.03). The incorporation of a spatial covariance 

structure did not improve model fit. Deuterium excess (calculated as d = 
2
H–8*

18
O) was 

uncorrelated with factors we would expect to relate to evaporation rates (soil moisture and 

leaf litter depth), indicating that soil surface evaporation was not likely to account for the 

observed patterns (p > 0.05). Finally, there were no significant relationships between ∆deep-

shallow soil water and either total cation exchange capacity or individual cations for either isotope 

(Figure S3 and Figure S4).  

Discussion 

By tracing water from precipitation to the leaf, our results demonstrate how the distribution 

of water isotope ratios varies through the soil-plant atmosphere continuum. Changes in the 

magnitude of variability from one pool of water to the next indicates both the effects of 

fractionating processes, as well as the integration and mixing of water sources from different 

times and locations. Beyond enabling inferences regarding how water moves through this 

forest, this unprecedented level of detail regarding the spatial heterogeneity of soil and plant 

water isotopes informs what can be inferred from past studies and what sampling 

considerations should be made moving forward.   

 

Effects of canopy interception on throughfall water isotopes 

 

During a precipitation event, processes associated with canopy interception introduce spatial 

variability in water isotopes. Assuming homogenous precipitation inputs during the 

precipitation event that occurred prior to sampling, canopy interception resulted in a 4.2 ‰ 

range in the δ
18

O of throughfall, with a mean ∆
18

Othroughfall-precipitation of 0.8 ‰. This is likely 

owing to the time-dependent differences in isotopic composition of precipitation during the 

event reaching the canopy and the spatially distinct mixing, exchange, and evaporative 

fractionation processes that subsequently occur within the canopy (Allen, Keim, Barnard, 

McDonnell, & Brooks, 2017). For example, drip from one location that occurs for a short 

period during high intensity precipitation may only reflect a small fraction of the total storm 

duration. This can be contrasted with another location where precipitation passes through the 
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canopy throughout the storm event without much interception and thus has isotopic ratios 

similar to open precipitation.  

 

The isotopic composition of throughfall for this event demonstrated significant spatial 

autocorrelation over short distances. Fine-scale spatial autocorrelation has previously been 

observed in throughfall amount (Staelens, De Schrijver, Verheyen, & Verhoest, 2006); 

however, evidence for autocorrelation in the isotopic composition of throughfall is more 

limited. Given that throughfall isotopic differences from precipitation are related to canopy 

characteristics, the apparent spatial variation in species and canopy gaps likely structured the 

throughfall heterogeneity. However, the presence of a nugget in our variogram model means 

that there is still significant variability that we are unable to account for in our sampling. For 

instance, this may mean that there is some combination of sampling error or drivers of 

heterogeneity at scales smaller than that at which we sampled.  

 

More generally, the effects of canopy interception are often not accounted for when 

considering the isotope ratios of water in soil and plants. Rather, it is assumed that 

precipitation isotopes ratios are an accurate representation of these isotope ratios. However, 

there is growing recognition that using throughfall isotope ratios in place of precipitation can 

improve the estimation of hydrological processes (Allen et al., 2017). Even for the one 

throughfall event observed here, both the mean and the individual spatially explicit values of 

throughfall were likely altered relative to precipitation. As such, assuming precipitation as a 

model input to soil or plants would affect the results and interpretation. If the spatial 

autocorrelation pattern is consistent over time, then we would expect systematic spatial biases 

in inputs to soil water. While this cannot be assessed here, it is important to consider 

sampling designs that appropriately and adequately characterize the water entering the soil 

surface.  

 

Effects of soil infiltration and retention on soil water isotopes 

 

Shallow soil water was generally depleted relative to mean annual precipitation at the time of 

sampling, but demonstrated a range of 10.7 ‰ in δ
18

O across the 1 ha area we sampled. The 

single throughfall event that occurred prior to sampling was likely too small to account for 

significant water infiltrating into the soil. As therefore may be expected, the weak spatial 

autocorrelation observed in soil water isotopes does not likely reflect the infiltration of this 
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throughfall event and there is no correlation between their values, which can be visualized 

using the interpolated maps of the two sources (Figure 5). Shallow soil water locations that 

were enriched in δ
18

O relative to the throughfall event we sampled may reflect either 

evaporation or the persistence of isotopically heavier prior precipitation events (Sprenger et 

al., 2016a). Shallow soil water locations that were depleted in δ
18

O may reflect the result of a 

combination of 1) the persistence of isotopically lighter prior precipitation events (e.g., from 

winter), or 2) a differentially rising water table across the hill slope that is flushing the 

shallow soil with groundwater. Four sampling locations that appeared to be seeps where 

exfiltration was occurring had water (mean = -9.7 ‰ δ
18

O) more similar to mean annual 

precipitation than much of the shallow soil water. Similarly, the few locations where 40-50 

cm deep soil water could be collected demonstrated isotope ratios that suggested a temporal 

lag or a bias towards winter precipitation. 

 

Inferring plant root water uptake using xylem water isotopes 

 

The smaller range of branch xylem water isotope ratios, as compared to soil water isotopes 

ratios, suggests that roots extend both laterally and vertically through soil and integrate 

waters with distinct isotope ratios (Figure 3). In the case of both species, xylem water was 

more similar to deeper soil water. Moreover, both the plot of xylem water isotope ratios and 

the mixing models indicated deeper root water uptake by F. sylvatica than P. abies, which is 

consistent with previous research comparing the fine root biomass as a function of soil depth 

in mixed stands of the two species (Bolte & Villanueva, 2006; Schmid & Kazda, 2001). 

However, as discussed below, the range of deep soil water overlapped substantially with 

shallow soil water and inferences regarding depth of water uptake are not consistent on a 

tree-by-tree basis depending on the specific soil water sample locations that are considered.  

 

Effects of evaporative enrichment on leaf water isotopes 

 

The variability of water isotope ratios in bulk leaf water was greater than that of the xylem 

water that supplies the leaves. This variability likely arises from the effects of different rates 

of leaf water evaporation superimposed upon differences in branch source water. Branch 

source water may differ within a crown when different roots take up isotopically distinct 

sources of water that travel through different flow paths within the xylem and into different 

branches in the crown (referred to as sectorality; Schulte & Brooks, 2003; Zimmermann, 
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1983). The high intra-crown variability of branch xylem water in P. abies compared with F. 

sylvatica may serve as an indication that distinct sources accessed by P. abies may supply 

different branches and remain distinguishable even upon reaching the crown. Differences in 

leaf position that lead to variation in microclimate, as well as differences in leaf age, 

morphology, or biochemistry may also result in variable rates of leaf gas exchange and H2
18

O 

bulk leaf water enrichment (Cernusak et al., 2016). The range of both the δ
18

O of branch 

water (-11.9 to -8.6 ‰) and leaf water enrichment relative to branch water (∆
18

Oleaf-branch:  -

24.5 to -18.8 ‰) within a single crown of P. abies demonstrates that while both source water 

differences and evaporative enrichment contribute to the observed variation in bulk leaf water 

isotope ratios, leaf water evaporation still plays a larger role. These results have important 

implications for the interpretation of hydrogen and oxygen isotopes from leaf water that are 

incorporated into plant assimilates (e.g., sugars and cellulose).  

 

Drivers of Variability 

 

The high spatial variation observed, particularly in soil water isotopes, raises questions about 

the processes that may contribute to the variability observed at this scale. In particular, there 

is renewed interest in soil water isotope fractionation driven by observed differences in soil 

and plant water isotopes relative to precipitation and stream water isotopes (Evaristo, 

Jasechko, & McDonnell, 2015; Goldsmith et al., 2012; McDonnell, 2014; Brooks et al., 

2010). There is increasing evidence that the magnitude of soil water isotope fractionation 

may be related to soil texture (e.g., surface area; (Golvan, Michelot, & Boisson, 1997) and 

chemical properties (e.g., cation exchange capacity; (Oerter et al., 2014). In addition to 

resulting in different liquid-vapor isotopic fractionation factors among soils (Lin & Horita, 

2016), differences in soil properties may contribute to observed differences in soil water 

isotope recovery depending on the laboratory method used for water extraction (Gaj, 

Kaufhold, & McDonnell, 2017a; Gaj, Kaufhold, Koeniger, & Beyer, 2017b; Orlowski, Pratt, 

& McDonnell, 2016b), or even variation among labs using the same method (Orlowski et al., 

2018). While we cannot exclude any effects based on the cryogenic vacuum distillation 

method used here, all samples were treated equally (but see Orlowski, Breur, & McDonnell, 

2016a). Rather, we focus on the processes that may contribute to soil water variation, 

particularly with respect to the effect of soil texture on water retention and mixing, as well as 

the possibility of an isotopic fractionation associated with increasing soil cation exchange 

capacity (Oerter et al., 2014). Increasing soil moisture and decreasing soil particle size (e.g. 



 

 

 

This article is protected by copyright. All rights reserved. 

higher percentage of silt) were significantly related to the isotope ratio of shallow soil water 

(Figure S2). However, this could result from differences in transit properties associated with 

texture. Furthermore, we found no evidence here for a relationship between soil water 

isotopes and increasing cation exchange capacity. Moving forward, both in situ studies of soil 

pore water vapor (Oerter & Bowen, 2017) and laboratory bulk soil water studies (Gaj et al., 

2017b) of soil water isotopes should consider both spatial (lateral) and vertical differences in 

soil characteristics that may result in isotopic heterogeneity. 

 

Variability in Geographic Space  

 

Ultimately, the high variation that we observe in water isotopes at this scale indicates that the 

choice of experimental design will have clear effects on the results and their interpretation. In 

particular, the overlapping distributions of shallow and deep soil water have consequences for 

inferring relative sources of plant water uptake, as demonstrated by mixing model solutions 

in Figure 6. The exercises demonstrate that heterogeneity in soil and xylem water samples 

yield wide distributions of possible source water mixtures in the xylem. This is the case 

irrespective of whether source contributions are calculated for each tree based on the nearest 

soil waters (Figure 6A), for each tree for all potential source waters (Figure 6B), or from 

means of subsampled sets as would be typical of a study of plant water uptake (Figure 6C). 

This final scenario, where we subsample our dataset using sample sizes that are typical of 

previous studies (Evaristo & McDonnell, 2017), provides a means of assessing the reliability 

of results of plant root water uptake studies to date. Although F. sylvatica seems to use less 

shallow water than P. abies, only 26% of the subsampling iterations using four trees of each 

species and three soil cores yielded statistically significant support for that inference (2-

sample t test, α = 0.05). Thus, using simple mixing models to identify source contributions 

likely leads to frequent misinterpretations, especially when sample sizes are small, because of 

the tremendous variability among individuals trees and soil samples. 

 

It is also of note that the mixing model results only account for differences in soil water 

isotopes as a function of vertical soil depth. However, lateral differences in soil water 

isotopes were similar in magnitude to vertical differences. For all the locations with paired 10 

and 40 cm depth soil water observations (n = 8), the absolute value of differences between 

the two depths (2.2 ± 1.4‰ δ
18

O and 15.8 ± 9.1‰ δ
2
H) was not statistically different from 

the absolute value of differences between the observations (1.5 ± 1.6‰ δ
18

O and 12.4 ± 9.1‰ 
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δ
2
H) of the nearest neighboring 10 cm depths (3.1 m average lateral distance; 2-sample t-test; 

p > 0.1). As such, it is possible that plants that appear to be taking up water from 10 to 40 cm 

soil depth are simply using water from 10 cm depth in different locations within the lateral 

spread of their roots.  

 

Many studies interpret plant root water uptake based on a limited number of soil profiles 

established at locations that are not specified relative to the locations of the plant sampling. 

Taken together, our results indicate the need to inform sampling design with a better 

understanding of the variability of water isotopes within the given scale of the study. For 

instance, our data resampling experiment suggests that approximately 50 soil water samples, 

15 branch xylem water samples, and 20 bulk leaf water samples would be necessary to obtain 

reliable estimates of the standard deviations in water isotopes we observed in our plot 

(Figure 7), although this depends on the nature of the study. These results are site and 

species-specific; similar approaches should be pursued at other locations and scales in order 

to improve our ability to confidently interpret environmental processes using stable isotopes 

of water.  

Conclusions 

By studying the spatial variation in throughfall, soil and plant water isotopes, we demonstrate 

how the water isotope signal propagates as it moves through the soil-plant atmosphere 

continuum, as well as how it varies in space. Sites with different characteristics (e.g., 

topography or soils) may have different patterns. While we observed some evidence for 

spatial autocorrelation of this signal within different pools (e.g., throughfall), there was 

considerable variation in soil water isotope ratios that raise important questions of how best 

to characterize and relate soil and plant water isotopes in space. While plant root water uptake 

across space (and time) may integrate much of this variation, fractionation associated with 

evaporative enrichment of leaf water re-introduces considerable intra- and inter-canopy 

variation. Accounting for these variations should lead to more accurate interpretations of 

oxygen and hydrogen isotopes in plant tissue (Gessler, Ferrio, Hommel, & Treydte, 2014).  

 

Moreover, it is unclear how the small-scale variations explored here influence the 

interpretation of large-scale patterns, where other processes presumably dominate (Allen, 

Kirchner, & Goldsmith 2018; Esper et al. 2018; Treydte et al. 2007). As such, there is a clear 

need to describe patterns of stable isotopes of water in the soil-plant-atmosphere across scales 
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and to better understand the processes that structure those patterns. While the study of stable 

isotopes of water has historically been limited by the resource-intensive nature of making 

observations, continuous improvements in existing methods (e.g. simultaneous measurement 

of both hydrogen and oxygen) and the emergence of new methods (continuous and real time 

in situ measurements; Oerter, Perelet, & Pardyjak, 2017; Volkmann & Kühnhammer, 2016; 

Volkmann & Weiler, 2014) hold great promise for improving our understanding of stable 

isotopes of water. Our results demonstrate the critical need to leverage these new advances to 

study pattern and process in both time and in space. 
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Tables 

 

Table 1. The 
18

O and 
2
H of water from different sources collected on one day in a 1 ha 

forest plot established near Leissigen, Switzerland. Data represent means ± 1 SD with range 

in parentheses.   

 Source δ
18

O (‰) δ
2
H (‰) 

Event precipitation -4.1 -22.6 

Stream -11.5 -80.8 

Event throughfall -3.3 ± 0.8 (-5.5 to -1.3) -18.9 ± 2.7 (-25.4 to -11.6) 

Soil (0-10 cm) -7.2 ± 1.7 (-11.0 to -0.3) -53.4 ± 10.6 (-83.4 to -33.2) 

Soil (40-50 cm) -11.2 ± 1 (-12.5 to -9.1) -81.5 ± 7.1 (-88.6 to -67.3) 

Branch (P. abies) -9.1 ± 1 (-11.9 to -7.7) -69.8 ± 5.7 (-82.0 to -60.6) 

Leaf (P. abies) 11.7 ± 1.3 (8.9 to 13.6) -21.1 ± 3.9 (-29.1 to -14.9) 

Branch (F. sylvatica) -10 ± 0.8 (-11.8 to -8.3) -83.5 ± 6.3 (-96.6 to -71.4) 

Leaf (F. sylvatica) 14.8 ± 1.7 (10.4 to 17.9) -23.9 ± 5.6 (-34.9 to -11.9) 
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Table 2. Characteristics of spatial autocorrelation observed in the 
18

O and 
2
H of water 

sampled from throughfall and soil in a 1 ha forest plot established near Leissigen, 

Switzerland. Significance for Moran’s I is indicated as *p < 0.05, **p < 0.01, and ***p < 

0.001.   

 

δ
18

O δ
2
H 

Source 

Moran's 

I Nugget 

Range 

(m) 

Partial 

sill 

Moran's 

I Nugget 

Range 

(m) 

Partial 

sill 

Throughfall 0.16*** 0.3 13.9 0.3 0.05* 5.2 25.0 1.7 

Soil 0.14*** 0 6.2 2.6 0.07*** 0 6.8 105.9 
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Figure 1. Locations for the sampling of throughfall, bulk soil, plant xylem, and leaf water 

isotopes in a 1 ha forest plot established near Leissigen, Switzerland. Locations are presented 

on a 2 m digital elevation model (swissAlti
3D

; Swiss Federal Office of Topography 2016). 
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Figure 2. The 
18

O and 
2
H of water from precipitation, a stream, throughfall, bulk soil, 

branch xylem, and leaves observed in a 1 ha forest plot. The solid line represents the global 

meteoric water line (GMWL) and the dashed line represents the local meteoric water line 

(LMWL).  
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Figure 3. Changes in the mean and range of the 
18

O of water from precipitation, throughfall, 

bulk shallow and deep soil, branch xylem, and leaf tissue observed in a 1 ha forest plot. 

Precipitation represents mean and range of monthly values from samples collected over time 

(1970-2015) from a nearby monitoring station, while throughfall, soil, branch xylem and leaf 

water samples were collected one time from many locations within the plot (see text for 

sample sizes).    
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Figure 4. Empirical variograms for 
18

O and 
2
H of water in throughfall (A and B) and soil 

(C and D) observed in a 1 ha forest plot.  
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Figure 5. Kriged layers of the 
18

O of A) 150 throughfall and B) 150 soil water (0-10 cm 

depth) with P. abies (triangles) and F. sylvatica (circles) xylem water observed in a 1 ha 

forest plot. Correlations between a subset of these soil-water isotope values and soil 

characteristics are shown in Figures S1, S2 and S3).   
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Figure 6. Proportion of water taken up by plants from shallow and deep soil inferred from a 

two end-member mixing model of the observed 
18

O of shallow (0-10 cm) and deep (40-50 

cm) soil and xylem water. Source water contributions were solved for A) each tree paired 

with the nearest shallow and deep soil water samples, B) each tree with every combination of 

shallow and deep soil water (boxplots for each tree with quartiles and whiskers extending to 

95% CI [1.57 inter-quartile range]), and C) a hypothetical representative sampling approach 

for a study of plant water uptake at a site using the means of four randomly selected xylem 

samples of each species, three shallow and three deep soil samples, then represented as 

probability density functions from a Monte-Carlo iteration (see Methods). Individual trees of 

each species in (B) are ordered from small to large diameter at breast height (1.3 m) from left 

to right.  
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Figure 7. The standard deviation of 
18

O in A) soil, B) plant xylem and C) bulk leaf water as 

a function of the number of samples, as generated from a Monte-Carlo iteration (1,000 draws) 

using the observed isotope ratios. 
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