67 research outputs found

    Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Get PDF
    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems

    Manual therapy directed at the knee or lumbopelvic region does not influence quadriceps spinal reflex excitability

    Get PDF
    Manual therapies, directed to the knee and lumbopelvic region, have demonstrated the ability to improve neuromuscular quadriceps function in individuals with knee pathology. It remains unknown if manual therapies may alter impaired spinal reflex excitability, thus identifying a potential mechanism in which manual therapy may improve neuromuscular function following knee injury

    H-Y Antigen Incompatibility Not Associated with Adverse Immunologic Graft Outcomes: Deceased Donor Pair Analysis of the OPTN Database

    No full text
    Background. H-Y antigen incompatibility adversely impacts bone marrow transplants however, the relevance of these antigens in kidney transplantation is uncertain. Three previous retrospective studies of kidney transplant databases have produced conflicting results. Methods. This study analyzed the Organ Procurement and Transplantation Network database between 1997 and 2009 using male deceased donor kidney transplant pairs in which the recipient genders were discordant. Death censored graft survival at six months, five, and ten years, treated acute rejection at six months and one year, and rates of graft failure by cause were the primary endpoints analyzed. Results. Death censored graft survival at six months was significantly worse for female recipients. Analysis of the causes of graft failure at six months revealed that the difference in death censored graft survival was due primarily to nonimmunologic graft failures. The adjusted and unadjusted death censored graft survivals at five and ten years were similar between the two genders as were the rates of immunologic graft failure. No difference in the rates of treated acute rejection at six months and one year was seen between the two genders. Conclusions. Male donor to female recipient discordance had no discernable effect on immunologically mediated kidney graft outcomes in the era of modern immunosuppression

    An intracellular isotropic diffusion signal is positively associated with pubertal development in white matter

    No full text
    Puberty is a key event in adolescent development that involves significant, hormone-driven changes to many aspects of physiology including the brain. Understanding how the brain responds during this time period is important for evaluating neuronal developments that affect mental health throughout adolescence and the adult lifespan. This study examines diffusion MRI scans from the cross-sectional ABCD Study baseline cohort, a large multi-site study containing thousands of participants, to describe the relationship between pubertal development and brain microstructure. Using advanced, 3-tissue constrained spherical deconvolution methods, this study is able to describe multiple tissue compartments beyond only white matter (WM) axonal qualities. After controlling for age, sex, brain volume, subject handedness, scanning site, and sibling relationships, we observe a positive relationship between an isotropic, intracellular diffusion signal fraction and pubertal development across a majority of regions of interest (ROIs) in the WM skeleton. We also observe regional effects from an intracellular anisotropic signal fraction compartment and extracellular isotropic free water-like compartment in several ROIs. This cross-sectional work suggests that changes in pubertal status are associated with a complex response from brain tissue that cannot be completely described by traditional methods focusing only on WM axonal properties
    corecore