187 research outputs found

    Food for Thought: Television Food Advertising to Children in the United States

    Get PDF
    As the fight against childhood obesity escalates, the issue of food advertising to children has come under increasing scrutiny. Policymakers in Congress, the Federal Trade Commission (FTC) and agencies such as the Institute of Medicine (IOM) have called for changes in the advertising landscape, and U.S. food and media industries are developing their own voluntary initiatives related to advertising food to children. To help inform this debate, the Kaiser Family Foundation released the largest study ever conducted of TV food advertising to children. The study, Food for Thought: Television Food Advertising to Children in the United States, combines content analysis of TV ads with detailed data about children's viewing habits to provide an estimate of the number and type of TV ads seen by children of various ages

    GRB Polarimetry with POET

    Get PDF
    POET (Polarimeters for Energetic Transients) represents a concept for a Small Explorer (SMEX) satellite mission, whose principal scientific goal is to understand the structure of GRB sources through sensitive X‐ray and γ‐ray polarization measurements. The payload consists of two wide field‐of‐view (FoV) instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2–15 keV and a high energy polarimeter (Gamma‐Ray Polarimeter Experiment or GRAPE) that would measure polarization in the 60–500 keV energy range. The POET spacecraft provides a zenith‐pointed platform for maximizing the exposure to deep space. Spacecraft rotation provides a means of effectively dealing with any residual systematic effects in the polarization response. POET provides sufficient sensitivity and sky coverage to measure statistically significant polarization (for polarization levels in excess of 20%) for ∌80 GRBs in a two‐year mission. High energy polarization data would also be obtained for SGRs, solar flares, pulsars and other sources of astronomical interest

    Field experiments and meta-analysis reveal wetland vegetation as a crucial element in the coastal protection paradigm

    Get PDF
    Increasing rates of sea-level rise and wave action threaten coastal populations. Defense of shorelines by protection and restoration of wetlands has been invoked as a win-win strategy for humans and nature, yet evidence from field experiments supporting the wetland protection function is uncommon, as is the understanding of its context dependency. Here we provide evidence from field manipulations showing that the loss of wetland vegetation, regardless of disturbance size, increases the rate of erosion on wave-stressed shorelines. Vegetation removal (simulated disturbance) along the edge of salt marshes reveals that loss of wetland plants elevates the rate of lateral erosion and that extensive root systems, rather than aboveground biomass, are primarily responsible for protection against edge erosion in marshes. Meta-analysis further shows that disturbances that generate plant dieoff on salt marsh edges generally hasten edge erosion in coastal marshes and that the erosion protection function of wetlands relates more to lateral than vertical edge-erosional processes and is positively correlated with the amount of below-ground plant biomass lost. Collectively, our findings substantiate a coastal protection paradigm that incorporates preservation of shoreline vegetation, illuminate key context dependencies in this theory, and highlight local disturbances (e.g., oil spills) that kill wetland plants as agents that can accelerate coastal erosion

    TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Get PDF
    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45–47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFÎșB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression

    Bariatric-metabolic surgery versus lifestyle intervention plus best medical care in non-alcoholic steatohepatitis (BRAVES). a multicentre, open-label, randomised trial

    Get PDF
    Background: Observational studies suggest that bariatric-metabolic surgery might greatly improve non-alcoholic steatohepatitis (NASH). However, the efficacy of surgery on NASH has not yet been compared with the effects of lifestyle interventions and medical therapy in a randomised trial. Methods: We did a multicentre, open-label, randomised trial at three major hospitals in Rome, Italy. We included participants aged 25-70 years with obesity (BMI 30-55 kg/m2), with or without type 2 diabetes, with histologically confirmed NASH. We randomly assigned (1:1:1) participants to lifestyle modification plus best medical care, Roux-en-Y gastric bypass, or sleeve gastrectomy. The primary endpoint of the study was histological resolution of NASH without worsening of fibrosis at 1-year follow-up. This study is registered at ClinicalTrials.gov, NCT03524365. Findings: Between April 15, 2019, and June 21, 2021, we biopsy screened 431 participants; of these, 103 (24%) did not have histological NASH and 40 (9%) declined to participate. We randomly assigned 288 (67%) participants with biopsy-proven NASH to lifestyle modification plus best medical care (n=96 [33%]), Roux-en-Y gastric bypass (n=96 [33%]), or sleeve gastrectomy (n=96 [33%]). In the intention-to-treat analysis, the percentage of participants who met the primary endpoint was significantly higher in the Roux-en-Y gastric bypass group (54 [56%]) and sleeve gastrectomy group (55 [57%]) compared with lifestyle modification (15 [16%]; p<0·0001). The calculated probability of NASH resolution was 3·60 times greater (95% CI 2·19-5·92; p<0·0001) in the Roux-en-Y gastric bypass group and 3·67 times greater (2·23-6·02; p<0·0001) in the sleeve gastrectomy group compared with in the lifestyle modification group. In the per protocol analysis (236 [82%] participants who completed the trial), the primary endpoint was met in 54 (70%) of 77 participants in the Roux-en-Y gastric bypass group and 55 (70%) of 79 participants in the sleeve gastrectomy group, compared with 15 (19%) of 80 in the lifestyle modification group (p<0·0001). No deaths or life-threatening complications were reported in this study. Severe adverse events occurred in ten (6%) participants who had bariatric-metabolic surgery, but these participants did not require re-operations and severe adverse events were resolved with medical or endoscopic management. Interpretation: Bariatric-metabolic surgery is more effective than lifestyle interventions and optimised medical therapy in the treatment of NASH. Funding: Fondazione Policlinico Universitario A Gemelli, Policlinico Universitario Umberto I and S Camillo Hospital, Rome, Italy

    Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs

    Get PDF
    Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs

    Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases

    Get PDF
    Abstract Inflammatory diseases of the aorta include routine atherosclerosis, aortitis, periaortitis, and atherosclerosis with excessive inflammatory responses, such as inflammatory atherosclerotic aneurysms. The nomenclature and histologic features of these disorders are reviewed and discussed. In addition, diagnostic criteria are provided to distinguish between these disorders in surgical pathology specimens. An initial classification scheme is provided for aortitis and periaortitis based on the pattern of the inflammatory infiltrate: granulomatous/giant cell pattern, lymphoplasmacytic pattern, mixed inflammatory pattern, and the suppurative pattern. These inflammatory patterns are discussed in relation to specific systemic diseases including giant cell arteritis, Takayasu arteritis, granulomatosis with polyangiitis (Wegener's), rheumatoid arthritis, sarcoidosis, ankylosing spondylitis, Cogan syndrome, Behcet's disease, relapsing polychondritis, syphilitic aortitis, and bacterial and fungal infections

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-ÎČ, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans
    • 

    corecore