5,364 research outputs found

    The effects of postexercise feeding on saliva antimicrobial proteins

    Get PDF
    The purpose of this study was to determine the effects of a carbohydrate (CHO) and protein (PRO) drink consumed immediately after endurance exercise on saliva antimicrobial proteins known to be important for host defense. Eleven male runners ran for 2 hr at 75% VO2max on 2 occasions and immediately postexercise were provided, in randomized order, either a placebo solution (CON) or a CHO-PRO solution containing 1.2 g CHO/kg body mass (BM) and 0.4 g PRO/kg BM (CHO-PRO). The solutions were flavor and volume equivalent (12 ml/kg BM). Saliva flow rate, lysozyme, α-amylase, and secretory (S) IgA concentrations were determined from unstimulated saliva samples collected preexercise, immediately postexercise, and every 30 min until 180 min postexercise. CHO-PRO ingestion immediately postexercise resulted in a lower saliva flow rate than with CON at 30 and 60 min postexercise. Saliva lysozyme concentration increased immediately postexercise in both trials compared with preexercise (p&lt; .05), and CHO-PRO ingestion immediately postexercise resulted in a higher saliva lysozyme concentration in the first hour of recovery than with CON (125% greater at 30 min, 94% greater at 60 min; p&lt; .01). Saliva SIgA concentration decreased below preexercise concentrations 90–150 min postexercise (p&lt; .001), with no effect of CHO-PRO. Saliva α-amylase activity was unaffected by exercise or CHO-PRO refeeding. CHO-PRO refeeding did not alter the secretion rates of any saliva variables during recovery. In conclusion, immediate refeeding with CHO-PRO evoked a greater saliva lysozyme concentration during the first hour of recovery after prolonged exercise than ingestion of placebo but had minimal impact on saliva α-amylase and SIgA responses.</jats:p

    A New 5-Flavour LO Analysis and Parametrization of Parton Distributions in the Real Photon

    Get PDF
    New, radiatively generated, LO quark (u,d,s,c,b) and gluon densities in a real, unpolarized photon are presented. We perform a global 3-parameter fit, based on LO DGLAP evolution equations, to all available data for the structure function F2^gamma(x,Q^2). We adopt a new theoretical approach called ACOT(chi), originally introduced for the proton, to deal with the heavy-quark thresholds. This defines our basic model (CJKL model), which gives a very good description of the experimental data on F2^gamma(x,Q^2), for both Q^2 and x dependences. For comparison we perform a standard fit using the Fixed Flavour-Number Scheme (FFNS_CJKL model), updated with respect to the previous fits of this type. We show the superiority of the CJKL fit over the FFNS_CJKL one and other LO fits to the F2^gamma(x,Q^2) data. The CJKL model gives also the best description of the LEP data on the Q^2 dependence of the F2^gamma, averaged over various x-regions, and the F_2,c^gamma, which were not used directly in the fit. Finally, a simple analytic parametrization of the resulting parton densities obtained with the CJKL model is given.Comment: 43 pages, RevTeX4 using axodraw style, 3 tex and 12 postscript figures, version submitted to Phys. Rev. D, small text changes, one reference added, FORTRAN program available at http://www.fuw.edu.pl/~pjank/param.html and at http://www-zeuthen.desy.de/~alorca/id4.htm

    Designing magnetic properties in CrSBr through hydrostatic pressure and ligand substitution

    Full text link
    The ability to control magnetic properties of materials is crucial for fundamental research and underpins many information technologies. In this context, two-dimensional materials are a particularly exciting platform due to their high degree of tunability and ease of implementation into nanoscale devices. Here we report two approaches for manipulating the A-type antiferromagnetic properties of the layered semiconductor CrSBr through hydrostatic pressure and ligand substitution. Hydrostatic pressure compresses the unit cell, increasing the interlayer exchange energy while lowering the N\'eel temperature. Ligand substitution, realized synthetically through Cl alloying, anisotropically compresses the unit cell and suppresses the Cr-halogen covalency, reducing the magnetocrystalline anisotropy energy and decreasing the N\'eel temperature. A detailed structural analysis combined with first-principles calculations reveal that alterations in the magnetic properties are intricately related to changes in direct Cr-Cr exchange interactions and the Cr-anion superexchange pathways. Further, we demonstrate that Cl alloying enables chemical tuning of the interlayer coupling from antiferromagnetic to ferromagnetic, which is unique amongst known two-dimensional magnets. The magnetic tunability, combined with a high ordering temperature, chemical stability, and functional semiconducting properties, make CrSBr an ideal candidate for pre- and post-synthetic design of magnetism in two-dimensional materials.Comment: Main text: 17 pages, 4 figures. Supporting Information: 34 pages, 32 figures, 4 table
    • …
    corecore