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ABSTRACT: Incorporating bismuth, the heaviest element stable to
radioactive decay, into new materials enables the creation of emergent
properties such as permanent magnetism, superconductivity, and
nontrivial topology. Understanding the factors that drive Bi reactivity is
critical for the realization of these properties. Using pressure as a tunable
synthetic vector, we can access unexplored regions of phase space to
foster reactivity between elements that do not react under ambient
conditions. Furthermore, combining computational and experimental
methods for materials discovery at high-pressures provides broader
insight into the thermodynamic landscape than can be achieved through
experiment alone, informing our understanding of the dominant chemical
factors governing structure formation. Herein, we report our combined
computational and experimental exploration of the Mo−Bi system, for
which no binary intermetallic structures were previously known. Using
the ab initio random structure searching (AIRSS) approach, we identified multiple synthetic targets between 0−50 GPa. High-
pressure in situ powder X-ray diffraction experiments performed in diamond anvil cells confirmed that Mo−Bi mixtures exhibit rich
chemistry upon the application of pressure, including experimental realization of the computationally predicted CuAl2-type MoBi2
structure at 35.8(5) GPa. Electronic structure and phonon dispersion calculations on MoBi2 revealed a correlation between valence
electron count and bonding in high-pressure transition metal−Bi structures as well as identified two dynamically stable ambient
pressure polymorphs. Our study demonstrates the power of the combined computational−experimental approach in capturing high-
pressure reactivity for efficient materials discovery.

■ INTRODUCTION

Extensive exploration of binary phase space has illuminated
trends of elemental reactivity and miscibility, quantified
temperature- and composition-dependent phase stability, and
led to the discovery of thousands of new compounds.1

Although binary materials are often stoichiometrically simple,
generalizable methods for predicting these structures remain
elusive because even small changes in chemical composition
can give rise to a wide variety of structures.2 In-depth analysis
of known structures has revealed trends in electronic and steric
requirements for specific structure types.3−10 However, the
occurrence of “empty” phase space where combinations of
elements exhibit no reactivity illustrates significant gaps in our
understanding of solid-state structure formation.
The application of pressure provides a tunable parameter for

promoting reactivity between elements that do not interact at
ambient pressure even at high temperature. Under pressure,
multiple chemical factors such as atomic volume, electronic
configuration, and orbital occupation become drastically
altered from their ambient states.11−13 Thus, the properties
of the elements relative to each other are renormalized, leading
to reactions that form materials which appear exotic relative to
ambient pressure phases. Notable examples include “simple”

ionic salts that acquire unprecedented oxidation states, the
discovery of numerous new metallic hydrides exhibiting
record-breaking superconducting critical temperatures, as well
as compounds formed by the “inert” noble gases.14−22 Recent
computational efforts have been directed toward codifying
these pressure-dependent trends into chemical heuristic scales
such as electronegativity, Lewis acidity and chemical hardness
that extend across the Periodic Table.23,24

The diffuse, metallic bonding exhibited by intermetallic
compounds presents a challenge for structure prediction and
insight compared to ionically bonded systems. A proven
strategy to address this challenge combines computational
methods that model the extended electronic structure of
intermetallic materials with ab initio structure prediction
algorithms that do not rely on known compounds for
reference. With sufficiently broad sampling of the high-
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pressure phase space, it becomes possible to map out the phase
diagram to direct experimentation. This type of approach is
well-suited to predicting binary intermetallic materials, as these
structures are often defined by a small number of atoms (<20)
related by multiple types of symmetry, resulting in a relatively
small phase space of importance.25 Recently, success has been
demonstrated26 using evolutionary algorithms,27 simulated
annealing or basin-hopping,28−30 and randomly generated
structures.31,32 The distinct advantage of random structure
generation is an essentially unbiased survey of high-pressure
phase space.
At ambient pressures, binary Bi compounds display diverse

emergent behaviors.33−35 However, the ambient pressure
reactivity of Bi is limited, perhaps due to the extreme chemical
softness of this heavy element.36 This behavior changes
significantly with the application of pressure, and the
investigation of high-pressure transition metal (TM)−Bi
phase space reveals rich chemistry over a range of
pressures.37−40 Notably, thus far no Group 6−Bi binary
intermetallic structures have been reported, representing a gap
in understanding of how electron counts influence TM−Bi
structure. In particular, Group 6 elements present a borderline
case in which either the ns2(n − 1)d4 or ns1(n − 1)d5

configuration is viable in the isolated atoms, which has
implications for their high-pressure electronegativity and
reactivity.24 We hypothesized that using a 4d metal over a
3d metal would promote (meta)stability upon decompression
to ambient pressure by reducing the difference in atomic radii
and chemical softness. Herein, we describe our combined
computational and experimental investigation of pressure-
dependent Mo−Bi reactivity.

■ RESULTS AND DISCUSSION
High-Pressure Mo−Bi Structure Prediction. We began

by using the ab initio random structure searching (AIRSS)
high-throughput approach (version 0.9.1) to computationally
explore high-pressure phase space in search of stable Mo−Bi
phases for targeted experimental synthesis.41 AIRSS integrates
with modern density functional theory (DFT) packages to
allow for the efficient sampling of potential energy surfaces
over vast regions of compositional space using only a minimal
level of sensible biasing of randomly generated structures (e.g.,
minimum separation constraints to prevent atomic core
overlap, presence of at least one symmetry element, reasonable
starting volumes, etc.).31,32 Furthermore, because each
structure is generated and treated independently, the method
is trivially parallelizable to take full advantage of modern
computer clusters. In our studies we used CASTEP to relax
each of the randomly generated structures toward their nearest
energetic minima.42

This procedure requires a careful balance between coverage
of composition space and sufficiently precise calculated
energies. Our preliminary searches were performed using
relatively low cutoff energies and soft pseudopotentials to
rapidly generate a large number of structures that ensures
adequate composition sampling (see the Supporting Informa-
tion, SI). We ran our first search at 40 GPa, which is near the
upper limit of achievable pressure in the specific diamond anvil
cell (DAC) employed in our experiments, generating
approximately 10 000 relaxed structures. The lowest energy
structure was within 25 meV/atom of the elements,
demonstrating the enhanced stability of Mo−Bi compounds
under high pressures (for reference, in calculations carried out

with the same parameters at 0 GPa, the lowest energy structure
had a formation enthalpy of +115 meV/atom).
To gather more accurate energies of the lowest lying

structures, and thus better assess their thermodynamic stability,
we performed a second round of higher accuracy random
structure searches. These calculations are detailed in the SI and
involve higher cutoff energies and harder pseudopotentials.
The formation enthalpies versus composition for the low-lying
(ΔH < 200 meV) structures are plotted in Figure 1. The

convex hull is also plotted and reveals that three compositions
are expected to adopt structures with negative formation
enthalpies relative to the elements at 40 GPa: MoBi (P4/
nmm), MoBi2 (I4/mcm), and MoBi3 (P4/mmm).
Analysis of these predicted structures gives insight into

possible high-pressure chemistry of Mo−Bi mixtures. Begin-
ning with the most stable structure, MoBi3 (P4/mmm) has a
calculated formation enthalpy of −19 meV/atom. The second
most stable predicted structure, MoBi (P4/nmm), has a
formation enthalpy of −12 meV/atom, yet lies slightly above
the convex hull (+1 meV/atom) due to the high stability of
MoBi3. We note a common structural motif shared not only by
the lowest energy MoBi and MoBi3 structures, but by all of the
structures with these two compositions that are found to be
stable relative to the elements: each can be described as
alternating layers of square nets, with each layer translated by
half of a unit cell resulting in an A B A B type ordering, similar
to the body-centered cubic (bcc) structure type. Each
stoichiometry manifests as a different pattern of element
identity of each layer (A B A′ B′ for MoBi and A B′ A′ B′ for
MoBi3) and also leads to a distortion along the stacking axes to
account for the size difference between Mo and Bi (see Figure

Figure 1. Convex hull diagram (top) constructed by comparing the
enthalpy of randomly generated Mo−Bi structures found at 40 GPa
(blue dots) with the enthalpy of the elements (Mo, turquoise; Bi,
purple). The three lowest energy compositions found to be stable
relative to the elements are highlighted in green and orange, with the
predicted structures for MoBi2, MoBi, and MoBi3 and those of the
elements shown (inset and bottom).
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1, bottom). The small differences in energy between the most
stable phases at each composition (<20 meV/atom) indicate
that we could expect to access multiple of these related
compositions at experimentally relevant temperatures. The
similarities of these predicted phases to each other and to
elemental Mo and Bi(V) suggest a lack of atomic site
preference, which could manifest experimentally as a bcc
substitutional alloy. Because these calculations describe bulk
ordered structures (a manifestation of the constrained unit cell
size used in the searches), we could not distinguish between an
ordered material and a randomly substituted alloy with these
structure predictions. The formation of alloys is driven by
similarities in atomic size and electronegativity, which are
expected to converge for Mo and Bi at moderate pressures.43

Alloy formation is also consistent with a previous report of an
uncharacterized superconducting Mo−Bi material formed from
a 1:3 mixture of the elements at 4 GPa,44 suggesting a
reasonable synthetic target in this phase space.
In addition to these modified bcc structures, we found a

MoBi2 candidate phase at 40 GPa with a formation enthalpy of
−9 meV/atom, and a distance from the convex hull of +7
meV/atom (Figure 1, inset). Compared to the MoBi (P4/
nmm) and MoBi3 (P4/mmm) structures, in which the Bi atoms
form square nets, the I4/mcm structure consists of columns of
Bi square antiprisms with Mo chains running through the
center of each column. This structure corresponds to the
CuAl2 structure type, one exhibited by over 200 binary
intermetallic compounds, but is distinct from the elemental
structures of either Mo or Bi. Accordingly, this MoBi2 structure
is present in multiple databases as the result of varied
computationally driven material discovery efforts and is
found to have a formation enthalpy of > +300 meV/atom at
ambient conditions.45,46 More generally, Bi does not form
materials in this structure type at ambient conditions but does
react with Fe above 30 GPa and Mn above 8 GPa to form the
analogous FeBi2 and MnBi2 structures, respectively.38,47

Similarly, CrSb2, which exhibits a marcasite-type structure at
ambient pressure, forms the CuAl2-type structure at 5.5 GPa.

48

The significant pressure dependent stabilization of the
structure combined with the high-pressure prevalence of
analogous Bi and Sb materials suggest that CuAl2-type
MoBi2 represents an additional promising target for exper-
imental realization at high-pressure.
To probe how the stabilities of these structures and the

overall phase diagram vary as a function of pressure, we
broadened the computational searches to include higher and
lower pressures. We performed five additional random
structure searches over 0−50 GPa in steps of 10 GPa, a
pressure range that fully captures our experimental capabilities.
A summary of the salient structures found across all six
searches is given in Table S7. The result of the structure search
at 50 GPa was similar to that carried out at 40 GPa, identifying
MoBi3 (P4/mmm) as the most stable predicted structure.
Although the AIRSS approach identified multiple candidate
structures between 0 and 30 GPa corresponding to local
minima on the potential energy surface and potentially
metastable materials, no binary structures were predicted to
be stable relative to the elements(Figure S9). This is consistent
with the reported phase diagram for Mo−Bi, which under
ambient pressures demonstrates immiscibility of the elements
up to elevated temperatures corresponding to the phase change
to a mixed gaseous state.49 We also employed a routine in
AIRSS that performs a linear extrapolation of the enthalpies of

the low-energy structures to higher and lower pressures than
the searches were run at (this method is described in ref 32,
section 6.4).32 The extrapolated enthalpies are only an
approximation, but they indicate that even more compounds
would be expected at pressures above 70 GPa (see SI), making
this a promising region of phase space for future exploration.

Synthesis and Structural Analysis of MoBi2. To target
these candidates experimentally, we performed high-pressure
experiments in a DAC between 5 and 45 GPa. The
transparency of diamond to a wide range of radiation
wavelengths allowed us to simultaneously heat samples with
a near-infrared laser while monitoring their structure with
powder X-ray diffraction (PXRD). We loaded cells with
mixtures of elemental Mo and Bi which had been compressed
into a thin foil. Laser-cut discs of single crystal magnesium
oxide (MgO)50 were used to insulate the sample from the
diamonds, as well as serve as a pressure transmitting medium
and the pressure calibrant.51 All manipulation of samples was
performed under an inert atmosphere to prevent the formation
of oxides. PXRD data were collected using a two-dimensional
detector at beamline 16-ID-B, HPCAT, Advanced Photon
Source (λ = 0.406626 Å, X-ray fwhm of 5 μm). This
experimental setup allowed for simultaneous sample character-
ization and laser heating, following the procedure described in
the SI.52

Throughout the pressure range examined, we observed rich
reactivity between Mo and Bi. Between 5 and 30 GPa, we
detected the formation of new diffraction rings whose weak
intensity coupled with their small number precluded structure
refinement methods (Figure S5). While this reactivity may be
consistent with the predicted ordered phases derived from bcc
structure packing arrangements, further experiments are
required to definitively determine the structure formed. In
comparison, throughout the 35−45 GPa pressure region, we
observed the growth of the same single phase expressing
multiple high intensity peaks. An example of the diffraction
patterns collected while heating in this range is given in Figure
2. We readily indexed these peaks to the I4/mcm space group,
and Rietveld refinement confirmed that the new phase was
MoBi2 in the CuAl2-type structure (Figure 3), consistent with
the predicted structure.
The CuAl2 structure type has been well-studied, leading to

established steric and electronic tolerances.53,54 Steric consid-
erations are a driving force for the formation of this structure
type, requiring an atomic radius ratio that balances stabilizing
A−B and B−B interactions with destabilizing A−A interactions
(where A represents the element in the Cu (Mo) site and B
corresponds the element in the Al (Bi) site).55 At elevated
pressures, the atomic radii of Mo and Bi can be approximated
from the experimental lattice parameters of their high-pressure
elemental bcc structures, affording radii of 1.3153(2) Å and
1.5407(4) Å for 8-coordinate Mo and Bi, respectively, at
35.8(5) GPa. The ratio of the Mo and Bi radii at this pressure
is 0.854, falling well within the range required to stabilize the
CuAl2 structure type (between 0.62 and 1.01).55 We can also
evaluate the high-pressure atomic distances found in the
structure by extrapolating from the 8-coordinate Bi radius to
the 15-coordinate value of relevance to this structure,
1.6023(4) Å.56 The Mo−Mo distance along the Mo based
chains is more than twice the elemental radius, suggesting little
interaction. In comparison, the relatively short Mo−Bi
distances in the square antiprisms provide strong evidence
for bonding (see Table 1 for structural parameters). This is
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consistent with the structural picture derived for the high-
pressure MnBi2 and FeBi2 analogues, highlighting that similar
high-pressure, high-temperature conditions are required to
overcome the immiscibility of Mo and Bi at ambient
conditions in order to form a solid-state Mo−Bi bond and a
Mo−Bi intermetallic material.38,47

Notably, examination of the Bi−Bi interaction in MoBi2
revealed significant deviation from the CuAl2 structure type.
Interlocking hexagonal networks of B (Bi) atoms are crucial to
this structure.53 These require the shortest B (Bi) contact (d1)
between atoms on adjacent antiprism columns to roughly
equal the second shortest B (Bi) contact (d2) between atoms
that form the sides of the triangular faces connecting the upper
and lower square faces of each prism. We found that in MoBi2
at 35.8(5) GPa d1 = 2.793(6) Å and d2 = 3.261(4) Å, falling on
either side of the threshold for a Bi−Bi bond (2rBi = 3.2046(8)
Å at this pressure). This is best quantified by the d1/d2 ratio,
which falls between 0.85−0.87 over multiple different
experiments performed between 35−45 GPa. In comparison,
the d1/d2 ratios in MnBi2 and FeBi2 are 0.94 and 0.95,
respectively, suggesting MoBi2 is more distorted than MnBi2
and FeBi2. This motif is rare for this structure type, but has
been observed in early transition metal−antimonide analogues,
for which d1/d2 = 0.83, 0.87, and 0.88 for TiSb2, V0.96Sb2 and
the high-pressure polymorph of CrSb2, respectively.48,57,58

Although the difference in principle quantum numbers
necessitates caution when comparing MoBi2 to these lighter
analogues, we hypothesized that a similar distortion mecha-
nism, determined by valence electron count, is operative in the
MoBi2 structure.

Electronic Structure of MoBi2. Given the dearth of Mo−
Bi materials and solid-state Mo−Bi bonds, we turned to
electronic structure calculations to probe the connection
between Bi−Bi distortions in MoBi2 and its valence electron
count. The short Bi−Bi contacts are readily visualized in the
electron localization function (ELF) calculations as discrete
dumbbells (Figure 4). While these features suggest a charge
separated configuration which may be formally described as
Mo2+[Bi2]

2− based on analogous Bi Zintl compounds,59 the
absolute ELF value suggests little localization relative to an
electron gas (ELF = 0.5 isosurface shown in Figure 4). Rather
than traditional semiconducting Zintl behavior, this reflects the
metallic character of the phase consistent with the calculated
band structure (Figure S13). Inspection of the electronic
projected density of states (PDOS) confirms that the region
near the Fermi energy (EF) is dominated by both Bi 6p and
Mo 4d electrons. The EF falls in a region of high DOS with
2.06 states/eV/f.u., which occurs 1.41 eV above a pseudogap in
the DOS. A similar feature is calculated for the TiSb2 and
V0.96Sb2 members of the subclass of distorted CuAl2-type
structures, with an important difference in the position of the
Fermi energy relative to the pseudogap.60 For TiSb2, they
coincide, while for V0.96Sb2 the Fermi energy falls above the
pseudogap in a region of high DOS. This was previously
attributed to the separation of bonding and antibonding states
based on weakening of Sb−Sb bonding from TiSb2 to V0.96Sb2
determined through Raman spectroscopy experiments. Exami-
nation of the crystal orbital Hamilton population (COHP)
projection for MoBi2 confirms this view applies to this Bi
example as well; the bands occupied at EF all possess
antibonding character, whereas most bonding interactions fall
2−4 eV below EF. While differences between Sb and Bi may
lead to nuanced effects on the experimentally observed d1/d2
ratios with decreasing metal−metal bond strength, we predict
an even greater antibonding orbital occupation in MoBi2 due
to the larger number of valence electrons compared with
V0.96Sb2 and TiSb2. We expect this to particularly affect the
strong bonds of the pnictogen dumbbells, and conclude that
the energy difference between the Fermi energy and the

Figure 2. In situ PXRD patterns collected while heating a mixture of
elemental Mo and Bi at 35.8(5) GPa (λ = 0.406626 Å) to 1450(5) K.
Each pattern has been background subtracted to allow for
comparison. At the end of the experiment, we observed peaks
corresponding to the MgO insulator, unreacted Bi and Mo as well as
new peaks that arose during heating denoted by green dots. The new
reflections are consistent with the predicted MoBi2 phase.

Figure 3. MoBi2 structure shown from two views (Mo, turquoise; Bi,
purple). Viewing along the c-axis (left) shows the Bi antiprism formed
around the chains of Mo atoms, with the shortest Mo−Bi and two
shortest Bi−Bi bonds highlighted for clarity. Tilting this structure 12°
about the a-axis (right) provides a view of the distorted interlocking
Bi hexagonal networks.

Table 1. Selected Crystallographic Parameters for the
Experimentally Observed CuAl2-type MoBi2 Structure

MoBi2 (35.8 GPa)

a 6.416(1) Å
c 5.488(3) Å
c/a 0.8554
x 0.1529(7)
Mo−Mo 2.744(2) Å
Mo−Bi 2.793(4) Å
Bi−Bi (d1) 2.774(7) Å
Bi−Bi (d2) 3.261(4) Å
d1/d2 0.8507
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pseudogap is operative in determining the extent of distortion
away from hexagonal networks in these materials.
Similar trends of structural distortions with changing

electron counts have been observed in other transition
metal-pnictogen systems. In such materials, Hoffmann and
co-workers invoked a second-order Jahn−Teller distortion to
explain increased structural distortion with greater valence
electron count.61 One may expect that as more valence
electrons are added to such structures, there will be a critical
point when the energetic gain for the bonding orbitals through
a distortion will be offset by the filling of antibonding orbitals
and an undistorted structure will again be favored. MoBi2 falls
in the middle of this regime, such that we expect Group 4 and
Group 5 analogues to exhibit greater structural distortion,
while the MnBi2 and FeBi2 analogues exhibit less. However,
the electronic structure implications for this trend also imply
decreasing stability with increasing electron count due to the
occupation of antibonding orbitals for all relevant interactions.
This may limit examples of later 4d (TM)Bi2 CuAl2-type
structures while at the same time contextualizing the prediction
that the 3d metal analogues are potential ferromagnets
undergoing magnetic transitions to relieve the occupation of
antibonding orbitals at the Fermi energy.47,62,63 This highlights
the important interplay between structure and electronic
properties in these materials.
Lattice Dynamical Properties of MoBi2. Although we

concluded that the valence electron count mainly governs the
structural distortions in MoBi2, we expected its pressure-
dependent properties to be significantly impacted by steric
factors. In particular, we were interested in how the inclusion
of a larger 4d transition metal affected the dynamic stability of
the (TM)Bi2 phase once formed. We therefore performed
decompression experiments during which we collected in situ
diffraction patterns as we incrementally decreased pressure in

the DAC (Figure S7). Peaks corresponding to MoBi2 were
observed down to ∼3 GPa. Diffraction patterns collected
below this pressure contained MgO, Mo and the ambient
pressure Bi polymorph. While the formation of amorphous
materials could not be ruled out, the observed patterns were
indicative of the decomposition of MoBi2 into its constituent
elements.
To further explore the Mo−Bi phase space, we computa-

tionally analyzed the pressure-dependent structure of the
experimental I4/mcm MoBi2 phase. We began by assessing the
Gibbs free energy of formation of the phase. As outlined in the
SI, by including a vibrational energy term, we considered
entropic contributions to approximate the temperature
dependence of its thermodynamic stability. This analysis
revealed that MoBi2 (I4/mcm) is only thermodynamically
stable over a specific range of pressures and that temperature is
an important handle for accessing this phase, consistent with
experimentally determined conditions for its synthesis.
Next, we examined the phonon-band dispersions over a

series of pressures between 0−40 GPa (Figure 5) to better
understand the results of the decompression experiment and
the metastability of MoBi2 in general. Dynamic instability, as
seen by imaginary frequency bands in the phonon spectra,
reflects the tendency of a structure to undergo a vibrationally
driven phase change which could provide insight into the
persistence of synthesized phases upon decompression. We
found that the relaxed experimental structure is dynamically
stable at high-pressures, but at ambient pressure (0 GPa) we
observe multiple unstable phonons with imaginary frequencies.
Major instabilities arise upon decompression below ∼13 GPa
at the Γ and X points in the Brillouin zone (Figure 5, inset).
To assess the effects of these instabilities, we froze these
distortions into the structure, which when relaxed yielded a
dynamically stable MoBi2 (I4/m) polymorph from the Γ point

Figure 4. Electronic projected density of states (DOS, left), projected crystal Hamilton population (−pCOHP, middle) and isosurface from the
electron localization function (ELF, right) of MoBi2 I4/mcm structure at 40 GPa. The main contribution to the DOS near the Fermi energy derives
from the Bi 6p (purple) and Mo 4d (turquoise) orbitals, while the Bi 6s (dark purple), Bi 5d (light blue), Mo 5s (dark green), and Mo 5p (light
green) orbitals show minor contributions. The pCOHP of the atomic pairs with the shortest distances are shown: Mo−Bi (blue), Bi−Bi d1 (solid
purple), Bi−Bi d2 (dashed purple), and Mo−Mo (turquoise), demonstrating the antibonding character (negative −pCOHP values) of the valence
bands. The ELF isosurface (blue, shown at the 0.5 level, with Bi and Mo depicted as purple and turquoise spheres, respectively) and a section of the
ELF parallel to the (1 1 0) plane at 1.5 × d (the lattice-plane spacing) from the origin highlight the Bi−Bi distorted net (right−top) and reveal the
presence of Bi−Bi dumbbells.
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and a dynamically stable MoBi2 (Cmcm) polymorph from the
X point (Figure 5, green and purple dots, respectively). The
(I4/m) structure was 13.3 meV/f.u. lower in energy then the
(Cmcm) phase, so we focus on the (I4/m) polymorph in the
following discussion (see the SI for details on the (Cmcm)
phase).
Comparison of the MoBi2 polymorphs reveals structural

features that underlie the ambient pressure instability of the
MoBi2 (I4/mcm) phase. As shown in Figure 5 (bottom), the
distortion driven by the ν1 (Γ) comprises Peierls-type
displacements leading to Mo−Mo dimers that reduce some
of the Mo−Mo repulsion as well as rotation of the Bi
dumbbells that disrupts the Bi−Bi networks. This creates more
space for the larger Bi atoms, potentially allowing for relief of
the decreasing rMo/rBi ratio which has been implicated in the
decomposition of these high-pressure (TM)Bi2 phases due to
breaking of the Mo−Bi and Bi−Bi bonds.47 Accordingly, we
predict a disproportionate lengthening of Mo−Bi and Bi−Bi
bonds upon decompression reflecting not just atom expansion
but also bond weakening. However, comparison of the
integrated pCOHP of the ambient pressure polymorphs
suggests that the bonding character of the Mo−Bi bond and
the Bi−Bi d2 interaction increases upon distortion, promoting
stabilization (see the SI, Figure S14 and Table S11 for further
discussion). While investigation of the thermodynamic stability
of the MoBi2 (I4/m) structure reveals that it does not fall on
the convex hull, it is a potential metastable target for synthesis
via careful temperature control to allow for kinetic trapping.

■ CONCLUSION
The foregoing results illustrate a powerful joint computational
and experimental approach to map out and elucidate the
chemistry of high-pressure phase space as well as forge a
connection with ambient pressure behavior. Through a
combination of computational and experimental high-pressure
structure searches, we mapped the Mo−Bi binary system.
Between 5 and 30 GPa, we observed evidence of the formation
of a new compound in low yield, which the results of the
AIRSS calculations and literature precedent led us to propose
arose from bcc type alloy formation. Driven by similarities in
atomic radii and electronegativity with increased pressure, alloy
formation may be prevalent throughout high-pressure phase
space of larger 4d and 5d TM−Bi mixtures. Above 35 GPa, we
discovered the stoichiometric compound MoBi2, the first
Group VI−Bi binary intermetallic structure. This represents a
significant increase in the diversity of known TM−Bi phases
and indicates that the CuAl2 structure type is common in high-
pressure Bi systems, allowing comparison across analogous
(TM)Bi2 species. This comparison revealed a trend between
valence electron count and structure, presenting a viable route
toward controlling bonding and electronic properties through
variation in TM element identity. The identification of two
distorted phases of MoBi2 (I4/m and Cmcm) that are
dynamically stable at ambient conditions via phonon
dispersion calculations indicates our combined computational
and experimental approach may also be a promising means for
directing the synthesis of mixed metal systems with favorable
dynamical properties. Isolation of these materials at ambient
conditions will be the focus of future work.
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(58) Armbrüster, M.; Cardoso Gil, R.; Burkhardt, U.; Grin, Y.
Refinement of the Crystal Structures of Titanium Diantimonide,
TiSb2, And Vanadium Diantimonide, V0.96Sb2. Z. Kristallogr. - New
Cryst. Struct. 2004, 219, 229−230.
(59) Dai, D.; Whangbo, M.-H.; Ugrinov, A.; Sevov, S. C.; Wang, F.;
Li, L.; Villesuzanne, A.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker,
R. J. Analysis of the Effect of Spin-Orbit Coupling on the Electronic
Structure and Excitation Spectrum of the Bi2

2- Anion in (K-Crypt)2

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://dx.doi.org/10.1021/jacs.0c09419
J. Am. Chem. Soc. 2021, 143, 214−222

221

https://dx.doi.org/10.1103/PhysRevLett.122.027001
https://dx.doi.org/10.1103/PhysRevLett.122.027001
https://dx.doi.org/10.1038/s41586-019-1201-8
https://dx.doi.org/10.1038/s41586-019-1201-8
https://dx.doi.org/10.1021/jacs.9b02634
https://dx.doi.org/10.1021/jacs.9b02634
https://dx.doi.org/10.1038/s41578-019-0101-8
https://dx.doi.org/10.1038/s41578-019-0101-8
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1063/1.1724816
https://dx.doi.org/10.1063/1.1724816
https://dx.doi.org/10.1063/1.1724816
https://dx.doi.org/10.1063/1.4861966
https://dx.doi.org/10.1063/1.4861966
https://dx.doi.org/10.1103/PhysRevLett.97.045504
https://dx.doi.org/10.1088/0953-8984/23/5/053201
https://dx.doi.org/10.1088/0953-8984/23/5/053201
https://dx.doi.org/10.1063/1.1702032
https://dx.doi.org/10.1063/1.1702032
https://dx.doi.org/10.1126/science.1245085
https://dx.doi.org/10.1126/science.1245085
https://dx.doi.org/10.1021/ja00905a001
https://dx.doi.org/10.1021/acs.chemmater.7b01418
https://dx.doi.org/10.1021/acs.chemmater.7b01418
https://dx.doi.org/10.1021/acs.chemmater.7b01418
https://dx.doi.org/10.1021/acscentsci.6b00287
https://dx.doi.org/10.1088/0953-8984/26/39/395701
https://dx.doi.org/10.1088/0953-8984/26/39/395701
https://dx.doi.org/10.1016/0022-3697(64)90018-6
https://dx.doi.org/10.1016/0022-3697(64)90018-6
https://www.mtg.msm.cam.ac.uk/Codes/AIRSS
https://www.mtg.msm.cam.ac.uk/Codes/AIRSS
https://dx.doi.org/10.1524/zkri.220.5.567.65075
https://dx.doi.org/10.1524/zkri.220.5.567.65075
https://dx.doi.org/10.1073/pnas.0813328106
https://dx.doi.org/10.1103/PhysRevLett.17.640
https://dx.doi.org/10.1007/s11837-013-0755-4
https://dx.doi.org/10.1007/s11837-013-0755-4
https://dx.doi.org/10.1007/s11837-013-0755-4
https://dx.doi.org/10.1021/acs.chemmater.9b00385
https://dx.doi.org/10.1021/acs.chemmater.9b00385
https://dx.doi.org/10.1016/S0925-8388(99)00056-0
https://dx.doi.org/10.1016/S0925-8388(99)00056-0
https://dx.doi.org/10.1063/1.4926889
https://dx.doi.org/10.1063/1.4926889
https://dx.doi.org/10.1063/1.4926889
https://dx.doi.org/10.1063/1.4926889
https://dx.doi.org/10.1029/2000JB900318
https://dx.doi.org/10.1029/2000JB900318
https://dx.doi.org/10.1063/1.4926895
https://dx.doi.org/10.1063/1.4926895
https://dx.doi.org/10.1063/1.4926895
https://dx.doi.org/10.1063/1.4926895
https://dx.doi.org/10.1016/0022-5088(72)90028-8
https://dx.doi.org/10.1016/0022-5088(72)90028-8
https://dx.doi.org/10.1016/0022-5088(72)90028-8
https://dx.doi.org/10.1016/j.jssc.2006.03.006
https://dx.doi.org/10.1016/j.jssc.2006.03.006
https://dx.doi.org/10.1016/j.jssc.2006.03.006
https://dx.doi.org/10.1016/0022-5088(72)90059-8
https://dx.doi.org/10.1016/0022-5088(72)90059-8
https://dx.doi.org/10.1016/0022-5088(72)90059-8
https://dx.doi.org/10.1007/BF00900849
https://dx.doi.org/10.1007/BF00900849
https://dx.doi.org/10.1524/ncrs.2004.219.14.229
https://dx.doi.org/10.1524/ncrs.2004.219.14.229
https://dx.doi.org/10.1021/jp044675q
https://dx.doi.org/10.1021/jp044675q
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c09419?ref=pdf


Bi2 on the Basis of Relativistic Electronic Structure Calculations. J.
Phys. Chem. A 2005, 109, 1675−1683.
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