202 research outputs found

    Social Enrichment during Postnatal Development Induces Transgenerational Effects on Emotional and Reproductive Behavior in Mice

    Get PDF
    Across species there is evidence that the quality of the early social environment can have a profound impact on neurobiology and behavior. In the present study we explore the effect of communal rearing conditions (three dams with three litters per cage) during the postnatal period on offspring (F1) and grand-offspring (F2) anxiety-like and maternal behavior in Balb/c mice. Females rearing pups in communal nests exhibited increased levels of postpartum maternal care and communal rearing was found to abolish sex-differences in weaning weights. In adulthood, communally reared offspring were observed to display reduced anxiety-like behavior when placed in a novel environment. When rearing their own offspring under standard conditions, communally reared females demonstrated higher levels of motivation to retrieve pups, built higher quality nests, and exhibited higher levels of postpartum care compared to standard reared females. When exposed to an intruder male, communally reared females were more subordinate and less aggressive. F2 offspring of communally reared females were observed to engage in reduced anxiety-like behavior, have larger litter sizes and an increased frequency of nursing on PND 1. Analysis of neuropeptide receptor levels suggest that a communal rearing environment may exert sustained effects on behavior through modification of oxytocin and vasopressin (V1a) receptor densities. Though Balb-C mice are often considered “socially-incompetent” and high in anxiety-like behavior, our findings suggest that through enrichment of the postnatal environment, these behavioral and neuroendocrine deficits may be attenuated both within and across generations

    A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    Get PDF
    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels

    The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies

    Get PDF
    A century ago, foundational work by Thorleif Schjelderup-Ebbe described a ‘pecking order’ in chicken societies, where individuals could be ordered according to their ability to exert their influence over their group-mates. Now known as dominance hierarchies, these structures have been shown to influence a plethora of individual characteristics and outcomes, situating dominance research as a pillar of the study of modern social ecology and evolution. Here, we first review some of the major questions that have been answered about dominance hierarchies in the last 100 years.Next,we introduce the contributions to this theme issue and summarize howthey provide ongoing insight in the epistemology, physiology and neurobiology, hierarchical structure, and dynamics of dominance. These contributions employ the full range of research approaches available to modern biologists. Cross-cutting themes emerging from these contributions include a focus on cognitive underpinnings of dominance, the application of network-analytical approaches, and the utility of experimental rank manipulations for revealing causal relationships. Reflection on the last 100 years of dominance research reveals how Schjelderup- Ebbe’s early ideas and the subsequent research helped drive a shift from an essentialist view of species characteristics to the modern recognition of rich inter-individual variation in social, behavioural and physiological phenotypes. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’

    Network Hawkes Process Models for Exploring Latent Hierarchy in Social Animal Interactions

    Full text link
    Group-based social dominance hierarchies are of essential interest in animal behavior research. Studies often record aggressive interactions observed over time, and models that can capture such dynamic hierarchy are therefore crucial. Traditional ranking methods summarize interactions across time, using only aggregate counts. Instead, we take advantage of the interaction timestamps, proposing a series of network point process models with latent ranks. We carefully design these models to incorporate important characteristics of animal interaction data, including the winner effect, bursting and pair-flip phenomena. Through iteratively constructing and evaluating these models we arrive at the final cohort Markov-Modulated Hawkes process (C-MMHP), which best characterizes all aforementioned patterns observed in interaction data. We compare all models using simulated and real data. Using statistically developed diagnostic perspectives, we demonstrate that the C-MMHP model outperforms other methods, capturing relevant latent ranking structures that lead to meaningful predictions for real data

    Foraging dynamics are associated with social status and context in mouse social hierarchies

    Get PDF
    Living in social hierarchies requires individuals to adapt their behavior and physiology. We have previously shown that male mice living in groups of 12 form linear and stable hierarchies with alpha males producing the highest daily level of major urinary proteins and urine. These findings suggest that maintaining alpha status in a social group requires higher food and water intake to generate energetic resources and produce more urine. To investigate whether social status affects eating and drinking behaviors, we measured the frequency of these behaviors in each individual mouse living in a social hierarchy with non-stop video recording for 24 h following the initiation of group housing and after social ranks were stabilized. We show alpha males eat and drink most frequently among all individuals in the hierarchy and had reduced quiescence of foraging both at the start of social housing and after hierarchies were established. Subdominants displayed a similar pattern of behavior following hierarchy formation relative to subordinates. The association strength of foraging behavior was negatively associated with that of agonistic behavior corrected for gregariousness (HWIG), suggesting animals modify foraging behavior to avoid others they engaged with aggressively. Overall, this study provides evidence that animals with different social status adapt their eating and drinking behaviors according to their physiological needs and current social environment

    DomArchive: a century of published dominance data

    Get PDF
    Dominance behaviours have been collected for many groups of animals since 1922 and serve as a foundation for research on social behaviour and social structure. Despite a wealth of data from the last century of research on dominance hierarchies, these data are only rarely used for comparative insight. Here, we aim to facilitate comparative studies of the structure and function of dominance hierarchies by compiling published dominance interaction datasets from the last 100 years of work. This compiled archive includes 436 datasets from 190 studies of 367 unique groups (mean group size 13.8, s.d. = 13.4) of 135 different species, totalling over 243 000 interactions. These data are presented in an R package alongside relevant metadata and a tool for subsetting the archive based on biological or methodological criteria. In this paper, we explain how to use the archive, discuss potential limitations of the data, and reflect on best practices in publishing dominance data based on our experience in assembling this dataset. This archive will serve as an important resource for future comparative studies and will promote the development of general unifying theories of dominance in behavioural ecology that can be grounded in testing with empirical data. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’
    corecore