2,173 research outputs found

    Reduced leakage current in Josephson tunnel junctions with codeposited barriers

    Full text link
    Josephson junctions were fabricated using two different methods of barrier formation. The trilayers employed were Nb/Al-AlOx/Nb on sapphire, where the first two layers were epitaxial. The oxide barrier was formed either by exposing the Al surface to O2 or by codepositing Al in an O2 background. The codeposition process yielded junctions that showed the theoretically predicted subgap current and no measurable shunt conductance. In contrast, devices with barriers formed by thermal oxidation showed a small shunt conductance in addition to the predicted subgap current.Comment: 3 pages, 4 figure

    Electronic reconstruction at SrMnO3-LaMnO3 superlattice interfaces

    Full text link
    We use resonant soft x-ray scattering to study electronic reconstruction at the interface between the Mott insulator LaMnO3 and the "band" insulator SrMnO3. Superlattices of these two insulators were shown previously to have both ferromagnetism and metallic tendencies [Koida et al., Phys. Rev. B 66, 144418 (2002)]. By studying a judiciously chosen superlattice reflection we show that the interface density of states exhibits a pronounced peak at the Fermi level, similar to that predicted by Okamoto et al. [Phys. Rev. B 70, 241104(R) (2004)]. The intensity of this peak correlates with the conductivity and magnetization, suggesting it is the driver of metallic behavior. Our study demonstrates a general strategy for using RSXS to probe the electronic properties of heterostructure interfaces.Comment: 4.2 pages, 4 figure

    Broken particle-hole symmetry at atomically flat a-axis YBa2Cu3O7-d interfaces

    Full text link
    We have studied quasiparticle tunneling into atomically flat a-axis films of YBa2Cu3O7-d and DyBa2Cu3O7-d through epitaxial CaTiO3 barriers. The junction heterostructures were grown by oxide molecular beam epitaxy and were carefully optimized using in-situ monitoring techniques, resulting in unprecedented crystalline perfection of the superconductor/insulator interface. Below Tc, the tunneling conductance shows the evolution of a large unexpected asymmetrical feature near zero bias. This is evidence that superconducting YBCO crystals, atomically truncated along the lobe direction with a titanate layer, have intrinsically broken particle-hole symmetry over macroscopically large areas.Comment: 15 pages, 4 figures; v2 includes minor changes in concluding paragraph to match PRL versio

    Terahertz-Mediated Microwave-to-Optical Transduction

    Full text link
    Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems enabling information processing with superconducting qubits and low-noise quantum networking through optical photons. Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption. We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range. Our analysis, supported by numerical simulations, shows that the two-step scheme operating with a continuous pump offers near-unity external efficiency with a multi-order noise suppression compared to direct transduction. As a result, two-step electro-optic transducers may enable quantum noise-limited interfacing of superconducting quantum processors with optical channels at MHz-scale bitrates

    In-situ strain tuning of the Dirac surface states in Bi2Se3 films

    Full text link
    Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudo-magnetic-field effects, helical flat bands and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here, we show that the Dirac surface states of the topological insulator Bi2Se3 can be reversibly tuned by an externally applied elastic strain. Performing in-situ x-ray diffraction and in-situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting reversible changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of Bi2Se3 and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes

    Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science

    Get PDF
    In March 2012, a group of researchers met to discuss emerging topics in ceramic science and to identify grand challenges in the field. By the end of the workshop, the group reached a consensus on eight challenges for the future:—understanding rare events in ceramic microstructures, understanding the phase-like behavior of interfaces, predicting and controlling heterogeneous microstructures with unprecedented functionalities, controlling the properties of oxide electronics, understanding defects in the vicinity of interfaces, controlling ceramics far from equilibrium, accelerating the development of new ceramic materials, and harnessing order within disorder in glasses. This paper reports the outcomes of the workshop and provides descriptions of these challenges
    • …
    corecore