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Abstract Decision making and optimal observer models of-
fer an important theoretical approach to the study of covert
selective attention. While their probabilistic formulation al-
lows quantitative comparison to human performance, the mod-
els can be complex and their insights are not always immedi-
ately apparent. Part 1 establishes the theoretical appeal of the
Bayesian approach, and introduces the way in which proba-
bilistic approaches can be applied to covert search paradigms.
Part 2 presents novel formulations of Bayesian models of
4 important covert attention paradigms, illustrating optimal
observer predictions over a range of experimental manipula-
tions. Graphical model notation is used to present models in
an accessible way and Supplementary Code is provided to
help bridge the gap between model theory and practical im-
plementation. Part 3 reviews a large body of empirical and
modelling evidence showing that many experimental phe-
nomena in the domain of covert selective attention are a set
of by-products. These effects emerge as the result of ob-
servers conducting Bayesian inference with noisy sensory
observations, prior expectations, and knowledge of the gen-
erative structure of the stimulus environment.

Keywords Covert attention · Signal detection theory ·
Bayesian · optimal observer · Probabilistic graphical model

1 Introduction

Helmholtz (1856) is often credited as having provided the
first experimental evidence of selective visual information
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processing. A prior decision by an observer to concentrate
upon a specific peripheral location resulted in enhanced iden-
tification of briefly illuminated letters. Resolving how and
why this, and related experimental effects, occur has not
been a trivial matter. A vast array of experimental paradigms
have since emerged to investigate different aspects of this
visual information processing. On one end of the spectrum
we have natural visual search taking place with multiple eye
movements and natural scenes. These paradigms fully em-
brace the complexity of ongoing information processing of
incoming sensory signals as the eyes move over time. How-
ever, if we wish to study the precise information processing
mechanisms underlying an observer’s behaviour, we must
exclude uncontrolled variation in the nature of the infor-
mation being processed by these mechanisms. The ‘perfor-
mance paradigm’ achieves this by: short display durations,
controlling for retinal stimulus location, and focussing upon
performance measures with non-speeded response instruc-
tions. While this paradigm may miss many of the impor-
tant challenges faced by observers in naturalistic stimulus
and task environments, it is a necessary trade-off in order to
study the information processing mechanisms.

A short stimulus display duration, typically in the order
of 100ms, is central to this approach. This near eliminates
the contribution from the serial process of eye movements
Zelinsky and Sheinberg (1997). It also eliminates a speed ac-
curacy trade-off in information accumulation time and per-
formance that would occur if stimuli were presented until a
response is made.

Another potential speed accuracy trade-off, in process-
ing time, can occur in the more commonly used ‘reaction
time paradigm’ (Wood and Jennings, 1976; Wickelgren, 1977).
If observers respond as quickly as possible whilst keeping
error rates low, it is possible that changes in reaction times
across experimental conditions could reflect changes of re-
sponse strategy, rather than of underlying information pro-
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Fig. 1 A schematic speed-accuracy tradeoff function where perfor-
mance increases with processing time before response. In the domain
of high performance, large changes in choice reaction time could be
due to a change in speed-accuracy strategy (rather than in the nature of
information processing) undetectable in terms of performance changes.

cessing. This strategy change could be undetectable how-
ever, because large changes in reaction time can be asso-
ciated with small changes in performance (see Figure 1).
Wood and Jennings (1976) highlight the importance of es-
tablishing a complete speed accuracy trade-off function. Stud-
ies that do this show that information processing is best ac-
counted for by parallel information processing mechanisms
(McElree and Carrasco, 1999; Dosher et al., 2004), with
serial processes being attributable to eye movements (Lu
et al., 2010). The majority of studies examined here however
employ the performance paradigm, where observers are in-
structed to maximise their performance, with this being the
primary, or only, behavioural measure.

Due to the changes in photoreceptor sampling density
over the retina, stimuli presented at different retinal eccen-
tricities will be encoded with varying levels of precision,
thus imparting differing amounts of information to an ob-
server. If this is unconstrained over the course of a trial, then
it is difficult to attribute experimental effects to informa-
tion processing changes as opposed to these early sensory
sampling changes (Kinchla, 1992). Using a circular array
of stimuli with central fixation and brief display durations
largely negates the major confound of retinal sampling den-
sity (Carrasco and Frieder, 1997).

Having established the rationale for the highly simplified
experimental paradigm, we still have more work to do before
embracing the details behind decision making approaches to
covert selective attention. Namely, which of two very differ-
ent forms of approach shall be taken and why?

1.1 Cause verses effect

We have at least two broad ways in which we may approach
the issue of attention (James, 1890). Firstly, we may ob-
serve some behavioural phenomena, and then search for an

internal mechanistic cause which produced those phenom-
ena. Alternatively, we may look outwardly to the environ-
ment and ask why these behavioural effects occurred. This
cause/effect distinction first highlighted by James, is rarely
discussed directly, but more recent examinations show that
it is crucial to address (and hopefully resolve or reconcile)
these different approaches (James, 1890; Johnston and Dark,
1986; Fernandez-Duque and Johnson, 2002; Anderson, 2011;
Krauzlis et al., 2014).

The causal approach, which could be mapped onto the
algorithm or implementation levels of analysis of Marr (1982),
proceeds broadly as follows: a) observe some behavioural
effects, b) infer the existence of a mechanism which caused
those effects, c) refine the proposed mechanism as more
data are observed over time. In the present context, many
researchers inferred the existence of a causal mechanism,
called attention, to account for experimental phenomena. Over
time, models of attention have been proposed and iteratively
adjusted in the light of new evidence (e.g. Treisman and
Gelade, 1980; Wolfe and Cave, 1989; Wolfe, 2007). While
this class of account have proven extremely influential, it
is important to remember that they carry this (sometimes
implicit) assumption that attention exists as a causal mech-
anism, and as recently argued by B. Anderson (2011), this
assumption is by no means universally accepted nor unprob-
lematic.

Alternatively, we could examine the computational goal
of observers (Marr, 1982), or take the related theory-level
approach of J. Anderson (1990). This approach assumes that
organisms are adaptively rational in that they try to optimise
behaviour to suit goals within a particular environment, un-
der the influence of constraints. This is conceptually very
different from the mechanism-level approach. In this frame-
work, potentially all behaviour is adaptive and our job as
scientists is to propose what it is that organisms are opti-
mising. Shaw and Shaw (1977) take this approach, arguing
that viewing search behaviour as adapted, in some sense,
by the evolutionary selection pressures in a competitive en-
vironment. Under this approach, as will become clear, we
can reframe attention as being a set of experimental effects
(Johnston and Dark, 1986; Anderson, 2011) that emerge as
a by-product of our adaptively rational behaviour. This is a
key conceptual difference to grasp if the theoretical implica-
tions of Bayesian accounts of attentional phenomena are to
be fully appreciated. If we assume that behaviour is adapted
to the environment, we must a) characterise the structure of
the environment, b) define the behavioural goals of the ob-
server, and then c) deduce the optimal behaviour.

In terms of (a), Anderson (1990) highlights that the struc-
ture of the external environment is easier to empirically mea-
sure compared to hypothesised internal cognitive mecha-
nisms. In our case, the statistical structure of the environ-
ment in our simple experimental paradigms can be precisely
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known and manipulated (see Figure 2). If we change the en-
vironment, then behaviour should alter in predictable ways,
thus allowing the adaptive explanation of the behavioural
observations to be experimentally tested 1 . In terms of (b)
because the tasks of localisation or detection are so simple,
we can assume that the behavioural goal of a motivated ex-
perimental observer is to maximise the proportion of cor-
rect decisions. If we accept this, then we are on our way to
a theory-level explanation after conducting step (c), deduc-
ing some predicted behaviour in a variety of experimental
situations. Traditionally this has been done by using signal
detection theory (SDT) and deriving closed-form mathemat-
ical expressions to compute predicted performance levels.

1.2 Signal detection theory

Signal detection theory (Green and Swets, 1966) is an appli-
cation of the more general statistical decision theory (Mal-
oney and Zhang, 2010) and has been a powerful approach
with which to model simple attentional tasks. It is conceptu-
ally simple, consisting of three main steps (Wickens, 2002).
Firstly, it assumes that sensory evidence about a stimulus in
the world can be represented by a single number, such that
a stimulus display of 4 Gabors could be represented by 4
numbers. In practice, the sensory decomposition will con-
sist of many sensory channels (such as size, contrast, spatial
frequency, etc) but these are unmonitored due to their task
irrelevance. Second, this sensory evidence is corrupted by
stochastic noise. Third, the response decision is arrived at
through applying a simple decision rule to the magnitude of
sensory evidence. For example in yes/no detection, a yes re-
sponse could be given if the highest-valued sensory measure
exceeds a response threshold. Another aspect of the more
general statistical decision theory, is the concept of a gain
function. This specifies the gain or loss for each response,
dependent upon the state of the world. This has been incor-
porated in some covert attentional studies (eg. Navalpakkam
et al., 2009), but because the majority of studies reviewed
here use symmetrical gain functions (e.g. the gain of a cor-
rect detection is equal to a correct rejection), we do not focus
upon the role of rewards.

Application of SDT to covert visual search was pioneered
by (Palmer et al., 1993), and has subsequently become a
dominant explanation for a wide variety of experimental ef-
fects within this short display duration approach of studying
attention (reviewed in Section 3, and see Verghese, 2001).

1 This emphasis upon the role of the environment is also a key part
of Gibson’s ecological approach (Gibson, 1972). However, probabilis-
tic approaches directly oppose Gibson’s claim that the environment is
sufficiently rich so as to be unambiguous. They are more in line with
the constructivist approach that sensory observations of the environ-
ment are ambiguous, thus requiring inferences to be made about the
state of the world (Helmholtz, 1856; Gregory, 1980).

While the approach is conceptually simple, calculating pre-
dicted behaviours can get somewhat technical, which per-
haps subtly shifts the emphasis towards practical implemen-
tation and away from the theoretical implications of the mod-
els.

In some ways, the SDT and Bayesian models of covert
attention are very similar. They are manifestations of statis-
tical decision theory and bayesian decision theory, respec-
tively. The key difference between these two versions of
decision theory is that the latter models an observer’s prior
knowledge about the state of the world (Maloney and Zhang,
2010). For covert search tasks, both SDT and Bayesian mod-
els suggest a parallel, noise-limited mechanism, where cue-
ing effects are caused by decision-level mechanisms (changes
in response thresholds or priors) rather than cue-induced
changes in sensory encoding precision (Palmer et al., 1993,
2000; Verghese, 2001).

However, SDT and Bayesian models of covert attentional
effects are not always equivalent. Firstly, the Bayesian ap-
proach doesn’t necessarily assume that stimuli are repre-
sented by a single number (such as in population coding,
Zemel et al., 1998; Pouget et al., 2000). Ma (2012) points
out that it is not just important to take a singular sensory
measurement of stimuli, but also to estimate and represent
the level of uncertainty associated with those sensory mea-
surements on a trial-to-trial basis. A second difference is that
while SDT models can result in a range of possible predic-
tions depending upon different decision rules applied to a
sensory axis, Bayesian (optimal observer) models make sin-
gular predictions (Eckstein, 2011, p.18) based upon an axis
of posterior belief. Third, decision rules of SDT often apply
to noisy sensory observations, whereas under the Bayesian
approach, sensory information is always transformed into
likelihoods, so the decision stage deals with probabilities of
sensory measurements being caused by targets or distracters
instead of the raw sensory measurement itself. Having said
this, in summary, SDT can offer close approximations to
Bayesian models (Nolte and Jaarsma, 1967) and it would
be reasonable for SDT and Bayesian models to be thought
of as similar in their theoretical approach in explaining at-
tentional effects.

1.3 Bayesian observers

1.3.1 The Bayesian approach applied to our covert search
tasks

One appeal of viewing observers as conducting Bayesian in-
ference stems from a very basic assumption that the brain
does not have direct access to the true state of the world but
only to sensory measurements. The task of an observer is
to make inferences about the world, based upon these sen-
sory observations (Gregory, 1980; Pizlo, 2001). Probability
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Fig. 2 Overview of the trial structures for both cued and uncued versions of the yes/no and localisation tasks. Examples are shown for N = 2
display locations, but straight-forwardly extend to higher set sizes. The stimulus display is represented by oriented bar items, targets are rotated
clockwise from vertical (/), distractor items are rotated anti-clockwise from vertical (\). In spatial alternative forced choice with N display items
(N-SAFC localisation), the observers task is to indicate the location of the target item, in yes/no the observer’s task is to respond if the target is
present or absent. In cued experiments, a short inter-stimulus interval occurs after the cue to ensure identical pre-stimulus visual transients.

theory provides a way of doing this, Baye’s theorem shows
us how to combine our prior expectations about the state of
the world with our current sensory observations. A second
appeal of Bayesian approaches is that by describing the gen-
erative structure and statistics of the environment, they fulfil
an important aspect of Anderson’s approach of adaptive ra-
tionality.

In the experiments considered, observers are asked to in-
dicate either the location, or the presence or absence of a
target item, and so the possible state of the world is conve-
niently limited to just a few possible display types (see Fig-
ure 2). For example, in a 4 spatial alternative forced choice
(SAFC), where observers must indicate the location of a tar-
get item, there are only 4 possible display types (which we
shall call D) corresponding to the true location of the target.
In a yes/no task with 4 display items, there are now 5 possi-
ble display types due to the additional target absent display
type.

The first step proposes that observers have a ‘forward
model’ of how the true state of the world maps on to possible
sensory observations x and represents an observer’s internal
mental model of the task 2. This could also be called a causal

2 Bold symbols represent vectors, for example x = (x1, . . . ,xN)
where N equals the number of display items. The display type on each

model, or a generative model and could be summarised with
the likelihood term P(x|D), the probability of the observed
sensory data given a particular state of the world. Knowl-
edge of the generative structure of the task could be imparted
to the observer by verbal instruction or through experience
of practice trials.

The second step involves the observer solving the in-
verse problem: that is, using their causal model in reverse
working from observed sensory data to an inferred state of
the world. This can be summarised as the posterior P(D|x),
and results not in a single most probable state of the world,
but a distribution of belief over all possible states of the
world (display types), constrained by the observed data. This
second step, of solving the inverse problem is where Bayesian
inference is used. Bayes’ theorem shows that our beliefs
about the world (each display type 1, . . . ,J) can be updated
in the light of new data,

P(Di|x) =
P(x|Di)P(Di)

ÂJ P(x|D j)P(D j)
(1)

The mathematical definition of the forward model for a
given experimental paradigm, and the steps used to conduct

trial D however only takes on one value where D = {1, . . . ,N} for lo-
calisation, or D = {1, . . . ,N +1} for the yes/no task.
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The model also defines the likelihood term P(x|W ), the probability of
observing a particular value of x given a true state of the world W . The
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absent (grey curve) or present (black curve). The likelihoods for a par-
ticular observations x = 1.2 are used in Bayes’ Theorem to calculate
the posterior, see text for details. We see that observing x = 1.2 has
increased our belief that the target was present from 50% to 66.8%.

the Bayesian inference are a blessing and a curse. While the
formal definition of the model offers all the advantages of
a precise, unambiguous, and replicable quantitative model
(Farrell and Lewandowski, 2010), it could arguably act as
a barrier to understanding the core theoretical claims being
made. This tutorial review attempts to avoid this issue as
much as possible by using the expressive Graphical Mod-
elling syntax (Jordan, 2004; Lee and Wagenmakers, 2014).

1.3.2 A worked example

Before describing how the Bayesian approach can be ap-
plied to the 4 covert search tasks in Figure 2 we work through
a simple yes/no example (see Figure 3). Interested readers
can work through this section in conjunction with the Mat-
lab code bayes101.m. Observers are exposed to trials where
either a single item is present or absent, and their task is to
indicate which it is. The presence or absence can be thought
of as the true state of the world W . Observers do not have
direct access to the true state of the world however, only to
a noisy sensory observation x.

This task and stimulus environment can be compactly
represented by a probabilistic generative model (Figure 3,

top left) as follows:

W ⇠ Categorical( 1
2 , 1

2 ) (2)
x ⇠ Normal(W,1). (3)

Equation 2 defines a uniform prior P(W ) over the two states
of the world W = {0,1}. Equation 3 is the likelihood func-
tion P(x|W ) and defines sensory observations to be normally
distributed, centred upon the true state of the world with an
observation noise variance of s2 = 1.

Step 1: Generate simulated data. We can use the proba-
bilistic generative model to simulate a single trial, proceed-
ing in the direction of the arrows shown in the model. First
the state of the world is determined by sampling from the
prior. In this case it is equivalent to tossing a fair coin, and
the result was a signal present trial (W=1). While we as
an experimenter know this, the simulated Bayesian observer
does not. Next, a simulated sensory observation is made by
sampling from the distribution x ⇠ Normal(1,1), and the re-
sult is x = 1.2.

Step 2: The observer conducts inductive inference, pro-
ceeding from the observed value x to the state of the world
W . Observers will do this using their model of the task and
stimulus environment (ie. the generative model) which in-
cludes a prior, and the observed data. Observers do not just
estimate the most likely state of the world, but a distribution
of belief over each possible state of the world. In this exam-
ple, this equates to having a degree of belief that the signal
is present (W = 1) or absent (W = 0). The observer’s prior
over states of the world P(W = 0) = 0.5 and P(W = 1) = 0.5
are updated in the light of the observation x = 1.2 using
Bayes’ Theorem (Equation 1), which involves combining
prior and likelihood. The likelihood (Equation 3) can be
thought of as a neural tuning curve (Figure 3, bottom left),
one representing what distribution of observations would
be expected for signal absent trials, and another for signal
present trials. Using this interpretation, the likelihood repre-
sents the activity of a neuron with a tuning curve matched
to the stimuli expected for each possible state of the world
(Zemel et al., 1998; Pouget et al., 2000). The posterior be-
lief in each state of the world is calculated such that their be-
lief is now updated compared to their prior (Figure 3, right).
Because we only have two mutually exclusive states of the
world, we can calculate the posterior probability of target
presence, given the observation x, as

P(W = 1|x = 1.2) =
P(x = 1.2|W = 1)⇥P(W = 0)

P(x = 1.2|W = 0)⇥P(W = 0)
+P(x = 1.2|W = 1)⇥P(W = 1)

=
N(1.2;1,1)⇥0.5

N(1.2;0,1)⇥0.5+N(1.2;1,1)⇥0.5

=
0.3910⇥0.5

0.1942⇥0.5+0.3910⇥0.5
= 0.6682.
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and target absence as P(W = 0|x = 1.2) = 1 � 0.6682 =
0.3318.

Step 3: Make a decision based upon the posterior be-
lief. Unbiased observers will indicate the signal is present
if P(W = 1|x) > P(W = 0|x), which in this example trial
would be the case as the observer believes there is a 66.8%
probability that the signal was present.

In order to obtain predicted performance of this observer,
many trials would be simulated where accuracy of the ob-
server’s decisions are evaluated. In this example, the noise
variance s2 is a free parameter of the model which needs
to be estimated from experimental data. This parameter es-
timation step is important in many of the modelling studies
reviewed, but is not discussed here as it is not central to un-
derstanding the theoretical assertions of the approach.

1.3.3 Bayesian optimal observer models

A distinction can be made between the claim that observers
conduct Bayesian inference, and that they do so optimally
(Ma, 2012). Models of the latter type are Bayesian opti-
mal observers (or ideal observers) and their utility lies in
the comparison of human performance to a theoretical ideal.
Discrepancies between human performance and this ideal,
if there are any, provide clues to inspire further hypothesis-
ing (Geisler, 2011). Optimal observer models are therefore
not necessarily put forward as complete hypotheses for how
people act in the world, as they are highly customised to cal-
culate best possible performance in specific situations. Many
of the experimental phenomena reviewed in Section 3 are
well described by optimal observer models. However, there
are many ways in which observers can conduct Bayesian
inference, but fall short of optimal performance (see Sec-
tion 4.2), and a specific case study is highlighted in Sec-
tion 3.2.1. The following section outlines Bayesian optimal
observer models and their predictions in 4 simple covert at-
tention paradigms shown in Figure 2.

2 Bayesian optimal observer models and predictions

The steps involved in the practical evaluation of the models
presented below are outlined in the Supplementary Mate-
rial. Matlab code is available to download from https://

github.com/drbenvincent/BayesCovertAttention.

2.1 Inferences

Looking at the trial structures of the 4 experimental paradigms
considered (Figure 2) we can see that these are not com-
pletely unrelated tasks. We can describe uncued yes/no and
uncued localisation with a single probabilistic generative model
(Figure 4, top), and we can describe cued yes/no and cued

localisation with another model (Figure 4, bottom). In both
cases the observer infers the display type. For localisation
the observer infers which of N locations contains the tar-
get. In the yes/no task, the observer makes inferences about
which of N + 1 display type was shown. That is, was the
target present D = {1, . . . ,N}, or absent D = N +1.

For the uncued tasks, the model (Figure 4, top) can be
read in the forward generative direction as follows. On each
trial a display type Dt is sampled from a prior distribution
p, that is, a display type is selected as the outcome of a bi-
ased roll of a dice. For example, with a set size of N = 2,
this bias (or prior over display types) is p = [0.5,0.5] for lo-
calisation, and p = [0.25,0.25,0.5] for yes/no. The display
type then specifies the experimental stimuli, targets (with a
feature value of 1) and distracters (feature value 0) and their
locations. The observer then makes noise corrupted sensory
observations xt of the true stimulus. We assume this obser-
vation noise is normally distributed, centred on the true stim-
ulus value, and with a specified variance. Because some fea-
tures are encoded with greater sensory precision than others
(eg. cardinal versus diagonally orientation stimuli), the vari-
ance of this observation noise is not assumed to be equal for
targets s2

T and distractors s2
D.

This generative model is then used in reverse to make
inferences. Because the models here are more complex than
the simple worked example in Section 1.3.2, it is challeng-
ing to concisely describe how inferences are made. Inter-
ested readers are directed to the Supplementary Code to get
a more thorough insight, but it is possible to summarise the
inference process as follows. Based upon the noisy sensory
observations x, the observer uses the probabilistic generative
model to infer a posterior distribution of belief over display
types Dt . The resulting posterior probability of belief over
display types is then used to make a response decision, see
next section.

The cued tasks are similar to the uncued tasks in that
observers infer the display type, but now the cue provides a
further source of information about the display type to the
observer. A second probabilistic model (Figure 4, bottom)
can be used to model both cued tasks. The only addition to
the model is that the prior probability of each display type
is updated on every trial pt , incorporating knowledge of the
cue validity v and the observed location of the cue ct . For
example, if a 70% valid cue is observed in location 1 of 2,
then the prior over the target location is pt = [0.7,0.3]. The
rest of the model is identical to the non-cued tasks.

Because these are Bayesian optimal observer models,
the observer also has precise knowledge of observation noise
variance for targets s2

T and distracters s2
D, the prior proba-

bility p of each display type, and for cued tasks, the location
of the cue ct and the cue validity v.

https://github.com/drbenvincent/BayesCovertAttention
https://github.com/drbenvincent/BayesCovertAttention
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�
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Fig. 4 Bayesian models of the yes/no and localisation tasks, for both uncued (top) and cued (bottom) variants. For the uncued tasks, display types
on each trial Dt are sampled from a prior distribution p. On each trial, noisy sensory observations xt are made of N targets and distractors. For the
cued tasks (bottom) the observer’s prior over display types (target locations) are influenced on a trial-to-trial basis by the cue location ct and the
cue validity v. Circles represent continuous variables, squares represent discreet valued variables. Double bordered nodes represent deterministic
relationships, otherwise the relationships between connected nodes are stochastic. Larger boxes (plates) represent for-loops over either N display
items or T trials. Shaded nodes represent observations made by the optimal observer. See Supplementary Material for more detail.

2.2 Decisions

While the nature of the inferences made by observers in
the yes/no and localisation tasks are the same, the way that
an observer translates these into decisions varies depending
upon the task. In the localisation task, after having inferred a
posterior distribution of belief over display types (target lo-

cation), the observer simply responds to the location with the
greatest degree of belief, the posterior mode, also termed the
maximum a posterior (MAP) estimate (see Figure 5, left).

The yes/no task requires the observer to indicate if the
target was present or absent. It is straightforward to calcu-
late a decision variable for this task from the posterior over
display types by computing the probability that the target is
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Fig. 5 Decision rules for each task. For localisation, the observer re-
sponds to the location with the highest posterior probability of contain-
ing the target. For yes/no, the observer responds yes if the probability
of the target being present (the sum of display types 1 to N) is greater
than 0.5.

present, P(present) = 1 � P(absent) where Dt = N + 1 rep-
resents a target absent display type (see Figure 5, right). The
P(present) decision variable is used to calculate ROC curves
describing an observer’s performance in the next section.
And hit rates and false alarm rates can also be computed
if we assume the observer is unbiased, responding ‘yes’ if
P(present) > 0.5.

2.3 Optimal observer predictions for the uncued yes/no task

Figure 6 shows predicted behaviour of a Bayesian optimal
observer in the yes/no task. Technically, a Bayesian optimal
observer does not have a free response threshold parame-
ter (as described above, they respond ‘yes’ if P(present) >
0.5), but for purposes of illustration Figure 6(a) shows ROC
curves if this threshold were to vary. Because we, as experi-
menters, know the true display types, then we can extract a
distribution of decision variables for target present and target
absent trials, and then simply compute the ROC curves from
these target present/absent distributions of the decision vari-
able. The plot shows the ROC curves improving (increasing
in their area under curve, AUC) as the target distracter dis-
criminability (d0) increases.

The model was used to replicate set size effects, similar
to Eckstein et al. (2000). Performance in terms of AUC was
calculated as a function of set sizes, for a range of different
target distracter distances (d0), Figure 6(b).

The model also demonstrates the search asymmetry ef-
fect in the form of predicted ROC curves for two detection
searches with a set size of 2 (Figure 6c). The first is when tar-
gets have higher internal observation noise associated with
them s2

T = 4,s2
D = 1. The second is when the identities are

switched such that distractors now have the higher level of
internal noise associated with them, s2

T = 1,s2
D = 4. Notice

that performance is better (seen as higher AUC) when the
distracters have higher encoding precision than targets. This
is initially counter-intuitive, but it is a straight forward re-
sult due to the distracters contributing less noise to the deci-
sion variable compared to when distracters are encoded with
higher precision. In summary, a Bayesian optimal observer

account of search asymmetry effects is simply that different
stimuli can be encoded in our visual systems with different
levels of precision.

2.4 Optimal observer predictions for the cued yes/no task

The yes/no task has also been examined in conjunction with
a cue (eg. Shimozaki et al., 2003). Figure 7 shows predicted
cuing effects (hit rate advantage for the cued versus uncued
locations) in a range of situations. The cue has the effect
of updating an observer’s prior belief about the upcoming
target location. For a set size of 2, if the cue is predictive
of the cued location (v > 0.5) then the observer has an in-
creased belief that the target will occur at the cued location,
and a performance benefit is conferred (Figure 7, left). In
non-Bayesian terms one might typically read the assertion
that ‘attention is allocated to the cued location’ but attention
in this sense is often ill-defined. When the cues are counter-
predictive of the target location, then the performance ben-
efit is conferred to the uncued location (negative cuing ef-
fect). This means that an optimal observer should decreased
their degree of belief that the target will occur at the cued
location, and increase it at the uncued location (eg. Eckstein
et al., 2004; Vincent, 2011a). The beneficial effect of a cue is
also dependent upon the noise variance (d0) and the set size
(Figure 7, middle). The peak cueing effect increases with
set size, as the cue conveys greater amounts of information
to the observer when the number of possible target locations
are high (also see Figure 7, right).

2.5 Optimal observer predictions for localisation and cued
localisation tasks

Figure 8 (thick lines) shows predicted performance in the
localisation task for set sizes of 2, and 4. In each case, the
spatial prior of where targets appear was manipulated. The
probability of the target occurring in location 1 was manipu-
lated in 9 conditions between 0% to 100%, with equal prob-
ability of the target occurring in the remaining locations.
In other words, the amount of prior information available
to the optimal observer was varied. The predicted perfor-
mance is intuitive. Firstly performance was higher for higher
d0 values (achieved by manipulation of internal observation
noise, s2). Secondly, we can see that the lowest performance
occurs when the targets are uniformly distributed, that is,
where the observer has no prior knowledge of the upcom-
ing target location. This model provides a good account of
a spatial probability manipulation (see Sections 3.2.1 and
4.2). Figure 8 (thin lines) shows the predicted performance
in the exogenous cued localisation task for set sizes of 2, and
4. Note, that these predictions are identical to that of the en-
dogenous spatial probability manipulation (Figure 8, thick
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lines). This also mirrors the predictions made by (Vincent,
2011a) and provides a reasonable account of human perfor-
mance (but see Sections 3.2.2 and 4.2).

3 Explanations of attentional phenomena

Having been introduced to Bayesian concepts and seen spe-
cific optimal observer models applied to 4 attentional tasks,
we are in a position to generalise to the wider range of at-
tentional effects observed in the domain of visual selective
information processing with briefly displayed stimuli. While
different models are formulated to account for each specific
experimental task, these are all realisations of one core the-
oretical claim which could be described as: Attentional phe-
nomena are by-products of conducting inference about the
state of the world. We can use this approach to categorise
a wide range of attentional phenomena, and I will present
a brief, selective review of stimulus-based, and belief-based
phenomena. One could also argue that a class of reward-
based phenomena also exist, but these are not discussed here.

3.1 Stimulus-based phenomena

Many of what could be thought of as stimulus-based phe-
nomena (set size effects, conjunction searches, and search
asymmetries) were key experimental effects used as evidence
to support well known 2-stage serial-parallel models such
as Feature Integration Theory (Treisman and Gelade, 1980)
and Guided Search (Wolfe, 2007). However, SDT and Bayesian
approaches showed that a 1-stage, purely parallel (noise-
limited) mechanism provide good accounts of these effects
within the simplified performance paradigm.

3.1.1 Set size effects

As the number of display items increase, the performance
at detecting presence or absence of a target amongst distrac-
tors decreases. Palmer et al. (1993) examined set size effects
in 2IFC and yes/no detection tasks. Their stimuli were hor-
izontal lines, distracters were shorter, and target lines were
longer. However, rather than plotting how performance de-
creases as set size increases, they plot the amount of sen-
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sory evidence required to maintain a threshold performance
level. They found that the amount of evidence (difference
between target and distracter line lengths) increased roughly
linearly (on a log-log axis of set size v.s. threshold) with a
slope of 0.25 (for detection) and 0.31 for 2-interval-forced-
choice (2IFC). However, using this approach allowed them
to predict that these slopes (not intercepts) should be con-
stant regardless of the stimuli used. This strong prediction
matched human performance both in the 1993 paper and
also for many (but not all) stimuli, such as luminance in-
crements and the colour and size of blobs, in a follow up
study (Palmer, 1994).

Control of stimulus-based factors is an important issue
when studying information processing, and two important
issues were addressed by Palmer et al. (1993). Firstly, are
set size effects due to internal attentional factors or are they
simply by-products of the stimuli or our sensory sampling of
them? This was tested by seeing whether set size effects per-
sisted even when sensory factors were controlled for in their
methodological procedure: the ‘performance paradigm’ out-
lined in the introduction. Even with this paradigm it was
still possible that the different numbers of displayed stim-
uli (display set size) could form a non-attentional contribu-
tion to set size effects, and so they compared these results
to what they termed a ‘relevant set size’ manipulation (see
Figure 9). The number of displayed stimuli remains con-
stant, and set size is manipulated by use of bounding-box
cues determining the possible number and locations of rele-
vant stimuli on that trial or block. They found no difference

between a relevant set size and a display set size manipula-
tion, and because the former can only be interpreted as an
attentional effect, they conclude that display set size manip-
ulations are also attentional (not sensory) in origin. Their
second question was to determine if these effects are caused
by sensory- or decision-level mechanisms, or both (also see
Section 3.2.2). By comparing model fits to data, they found
a decision-based explanation could account for the results
of their Experiments 1 and 2. That is, their set size effects
could be accounted for purely by considering that additional
display items contribute noise to the sensory signals being
considered as either targets or distractors. The more display
items, the higher the chance that one particular noisy obser-
vation will be mistaken for a target (false alarm).

The generality of this explanation was established by
follow up studies. Palmer et al. (2000) considered a wider
range of SDT models, finding that a) optimal observers, b)
maximum of outputs, and c) maximum of differences mod-
els all provided good accounts of their experimental effects,
including that of set size. SDT explanations were also able to
account for observer’s performance in a wider range of ex-
perimental tasks (Cameron et al., 2004). A 2-target paradigm
was used, where targets could be either +15� or �15� Gabors.
Their tasks asked, which of two targets occurred (identifica-
tion), whether either target appeared (detection), and iden-
tification of a spatial location of either target (localisation).
Their SDT models could provide good accounts for human
set size effects under these additional tasks. One twist on
the set size effect, is that in oddity search (when the target
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stimuli, respectively.

is defined as being different from distractors, but the fea-
ture properties of targets and distractors are unknown in ad-
vance) then the set size effect is either very shallow or flat.
Schoonveld et al. (2007) showed, in a 2AFC task (target in
group 1 or group 2) the shallow set size effect was simply a
by-product of conducting inference with the observed stim-
uli in the context of this particular task structure, no other
mechanisms were required to account for the effects.

In summary, the set size effect can be understood fairly
intuitively. Taking yes/no detection of a target as an exam-
ple, observer’s responses of target presence/absence, is de-
termined by an inference based upon N noisy sensory ob-
servations. As the number of display items decrease, then
the number of items that could potentially be confused for a
target decreases giving rise to more accurate responses and
higher levels of performance. Therefore, we have a consis-
tent information processing mechanism which makes infer-
ences based on a particular set size. The change in perfor-
mance as a function of set size can then be attributable only
to the experimentally determined set size, and so the set size
effect is a by-product of increasing the number of stimuli
being processed.

3.1.2 Distracter heterogeneity effects

It is rare, in naturalistic situations, that a target could be
present amongst a set of entirely uniform distractor items,
normally these distractor items vary. To study the effects
of this heterogeneity, additional external noise (feature jit-
ter) is often added to distracters. While previous studies had
demonstrated a clear cost of increased distracter heterogene-
ity (e.g. Duncan and Humphreys, 1989), only later did the
effects receive quantitative treatment and support from SDT
models (Palmer et al., 2000). Distracters were vertical lines,
and the orientation offset of a target required to achieve a
threshold performance was determined. When switching to

a noise condition where distracters had feature jitter (s =
4�), targets then had to be offset further from vertical to
achieve the same level of performance. Palmer et al. (2000)
found that optimal observer (and other SDT) models could
quantitatively account for this increased sensory evidence
required over a range of set sizes.

In a yes/no detection task, some initial evidence showed
performance was explicable by Bayesian optimal use of sen-
sory information (Vincent et al., 2009). Distractor hetero-
geneity was manipulated on a block-wise basis. In this ex-
periment, the targets were Gabors oriented 0� from vertical,
with no external feature noise. Distracter orientations were
sampled from a Normal distribution with the same mean
orientation as the target, but external feature jitter was ma-
nipulated. As distractor feature jitter was increased, target
detection performance increased. Initially this may sound
in conflict with the results of Palmer et al. (2000) where
adding distracter jitter decreased performance (thus requir-
ing greater feature separation between the target and dis-
tracters), but is merely due to a difference in task (see Fig-
ure 10). In both cases, performance decreases as feature over-
lap between targets and distracters increase, as there is an
increased chance for distracters to be confused for a target
(false alarm) for example. This is powerful as the approach
can account for how distractor heterogeneity can both in-
crease and decrease performance in different situations. What
matters is not distractor heterogeneity as such, but the de-
gree of stimulus overlap between targets and distracters. A
Bayesian model was able to provide a good account of how
performance increased with distractor noise, as well as the
shapes of the underlying ROC curves (Vincent et al., 2009).
However, despite the claims of this model being optimal, it
had some limitations in that it only made locally (not glob-
ally) optimal decisions. Stronger evidence was provided by
Ma et al. (2011). Targets were defined by orientation, but
stimulus reliability was manipulated (by item contrast) on
a trial-to-trial basis. This meant that the observer was faced
with a set of distractors whose variability was uncertain from
one trial to the next. Their globally optimal Bayesian ob-
server provided a good account of human performance, and
provided strong support for the idea that the reliability of
sensory information is continuously assessed.

In summary, distractor heterogeneity impacts performance
as a direct result of observers making Bayesian inferences
about the display type where an external source of uncer-
tainty is added to distractors.

3.1.3 Search asymmetry effects

Search asymmetry effects occur when the search for a target
item A amongst distractors B gives rise to a different level of
performance than searching for a B target amongst A distrac-
tors. The Bayesian explanation of search asymmetry effects
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mance (Palmer et al., 2000, top) and increase performance (Vincent
et al., 2009, bottom), depending upon the stimuli. The distributions of
targets (sold lines) and distractors (dashed lines) reflect both internal
observation noise and external, experimenter added feature jitter. The
results are due to the differential effect of heterogeneity upon target
and distracter overlap.

is near-identical to that of distracter heterogeneity effects, in
that there is differential sensory uncertainty associated with
targets and distractors. Except that search asymmetry effects
represent an internal source of uncertainty difference asso-
ciated with different stimuli. The notion that search asym-
metries could be accounted for by differences in the sensory
uncertainty associated with display items A and B was op-
erationalised by Palmer et al. (1993). The magnitude of the
asymmetry effect should then relate to how far the sigma ra-
tio (sA/sB) deviates from 1. For example, search for a tilted
line amongst vertical lines is easier than the converse be-
cause there is a lower chance that one of the vertical lines
(with lower associated sensory noise) will be mistaken for a
tilted target.

Initial evidence in a standard RT paradigm search was
provided by Carrasco et al. (1998) using oriented line stim-
uli. They also propose that asymmetry effects can be ac-
counted for by a single parallel mechanism which processes
sensory information, where the tuning bandwidths is greater
for tilted lines. Simple cells of the primary visual cortex
could provide a plausible neural basis for this, both because
of the number of cells tuned to cardinal directions and be-
cause of their narrower tuning bandwidth (Li et al., 2003).
Dosher et al. (2004) used a speed accuracy tradeoff paradigm,
and their modelling work supported a parallel mechanism
underlying search asymmetry effects. Further empirical and
modelling (Bayesian and SDT) results confirmed this sigma
ratio (differential uncertainty) explanation in a short display
duration performance paradigm (Vincent, 2011b; Bruce and
Tsotsos, 2011). In summary, search asymmetry effects are
the result of conducting Bayesian inference upon sensory
observations of stimuli A and B, where the level of internal
noise (or encoding precision) is not the same for each item.

3.1.4 Conjunction search effects

The phenomena discussed up to this point relate to simple
feature search, where targets and distracters take on values
along a single dimension such as orientation or contrast. One
very small step toward a more realistic stimulus environment
is to consider what happens when targets and distracters
are defined by combinations of features. Conjunction search
tasks examine this case, where targets are now defined as the
combination of two particular feature values (such as a red
square) where distracters take on only one of those proper-
ties (so there are distractors that can be either red circles,
or green squares). The basic effect of defining targets by
combinations of features is to lower the performance of ob-
servers, as compared to searches for each individual feature
search. From a SDT approach, the intuition for this effect is
that the d0 of a conjunction search will be worse by a fac-
tor of

p
2 (assuming statistical independence of the feature

dimensions) because the uncertain sensory observations are
being projected onto a decision axis combining information
from 2 feature dimensions. Put a different way, for a cor-
rect detection to occur the stochastic noise in a conjunction
search could potentially make the target appear to look like
a distractor not just in one dimension, but in two.

The SDT approach was extended from single-dimension
feature search to multiple feature conjunction search by Eck-
stein (1998). A 2IFC task was used to map performance as
a function of set size. This performance curve was high for
each individual feature search in isolation, but the perfor-
mance curve was decreased in the conjunction search con-
dition. Predictions of SDT models provided a much better
accounts of human search performance as compared to se-
rial, and hybrid noisy serial models. Eckstein et al. (2000)
replicated effects for feature and conjunction but test the ac-
count further in disjunction (e.g. targets red circles, distrac-
tors green squares) and triple conjunction displays. While a
serial model could be rejected, it was unclear which of two
possible SDT decision rules provided the best fit of the per-
formance data across 3 subjects.

One of the powerful aspects of the parallel SDT models
is that performance as a function of set size can be predicted
for both individual features searches, and the conjunction
search. Further, these d0 parameters used for conjunction
search predictions are not free parameters, but are deter-
mined from each separate feature search. There is nothing
different about information processing of stimuli with mul-
tiple feature properties, the change in performance simply
reflects parallel information processing of uncertain sensory
data.
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3.2 Expectation- or Belief-based phenomena

If we wish to learn about internal information processing
underlying attentional effects then it is important to exclude
uncontrolled external stimulus-based factors from consid-
eration. When this is done in the performance paradigm,
the experimental effects that I have described as ‘stimulus-
based’ show that no internal attentional mechanism is re-
quired to account for the data. Instead they can be seen as
by-products of experimentally manipulating stimulus char-
acteristics. This places the locus of these effects externally,
into the environment. But there are attentional phenomena
influenced by internal processes, namely an observer’s be-
liefs about the state of the world.

3.2.1 Spatial probability effects

We live in a highly structured world where objects are not
uniformly distributed, so it would seem plausible to assume
that we can learn and utilise spatial distributions of where
targets are more likely to occur. But do we learn such spatial
distributions optimally and is this combined with visual cues
of the target’s location? Promising early evidence came from
Shaw and Shaw (1977) who used a spatial probability ma-
nipulation in a task requiring recognition of a letter stimulus.
Letters could appear close to the fovea (1�) in one of 8 loca-
tions. In a uniform condition the letter had an equal proba-
bility of appearing in each location and the display duration
was such that identification performance was approximately
68%. In a non-uniform condition, the location of stimuli was
determined by a spatial prior distribution which the subjects
had become familiar with in practice sessions. In this non-
uniform condition where some locations had a much greater
and some had a much lower probability of containing the tar-
get, identification performance increased to around 71%. In-
terestingly, the identification performance in the high prob-
ability regions was higher (⇠ 80%) than in the low proba-
bility regions (⇠ 35%). Their model, not framed in SDT or
Bayesian terms, suggested that the distribution of search re-
sources was proportional to the prior probability distribution
for each condition. In other words, observers were sensitive
to the environmental statistics governing target location.

Further evidence to suggest we utilise spatial prior prob-
ability distributions was provided by Druker and Anderson
(2010) using a choice reaction time measure in the judge-
ment of the colour of a single dot. Their first spatial proba-
bility distribution was of a mixture of a uniform distribution
across the display and a strong 2D Gaussian distribution to
the side of central fixation. Reaction times were faster to
the high probability side of the screen, and also increased
as a function of distance from the center of the high prob-
ability region. These effects were not attributable to retinal
eccentricity, nor speed accuracy tradeoffs. While this pro-

vided further evidence for use of spatial prior expectations,
without formal modelling of the RT data it is not possible to
address the question of how optimally observers were learn-
ing or utilising the spatial priors.

Evidence that observers do near-optimally utilise target
location probability was provided by Vincent (2011a). In
one endogenous cuing condition, observers indicated which
of 4 locations contained a target amongst 3 distractors. The
spatial prior distribution was altered such that one spatial lo-
cation (which the observer was informed of) had a certain
probability of containing the target, while it was uniformly
distributed amongst the remaining 3 locations. The perfor-
mance of observers in this 4SAFC task matched the predic-
tions of a Bayesian optimal observer (see Figure 8, thick
lines). This provided strong evidence that people were com-
bining (in a Bayesian manner) their spatial prior expecta-
tions and their uncertain sensory observations of the targets
and distracters. However, inspection of slight deviations be-
tween the predicted and actual performance showed that ob-
servers had probability biases. In low probability conditions
(where a location was chosen to have a lower than chance
level of occurring) observers acted as if they overestimated
the spatial prior of the target occurring at that location. In
the high probability conditions, they acted as if they un-
derestimated the probability. This pattern of probability bias
has been extensively observed and is the same pattern that
Prospect Theory describes (Kahneman and Tversky, 1979).
So while the results of Vincent (2011a) show that observers
are combining observations with their spatial expectations,
there exist non-normatively rational biases in what those ex-
pectations are (see Section 4.2).

3.2.2 Spatial cuing effects

In the SDT framework, the two possible ways in which a
cue could affect the ability to localise a target is through a
sensory- or decision-level mechanism. The sensory-level ex-
planation (also termed signal enhancement) is that observers
have a finite set of sensory resources, and the effect of the
cue is to reallocate those resources such that the d0 sensitiv-
ity (or signal-to-noise ratios) are changed in favour of the
cued location. Formal modelling of the sensory-level ex-
planation in terms of resources was provided by Eckstein
et al. (2009). The alternative, but not necessarily mutually
exclusive explanation, is that the cue has its affects at a later
decision-level stage (also termed noise reduction, uncertainty
reduction, response criterion shifts, or updated prior expec-
tations). Cues reduce the uncertainty about the upcoming
target location by updating a spatial prior belief of where the
target may occur, given the information imparted by the cue
(see Figure 4, right). For example, with a 100% valid cue,
uncued locations are expected to have a 0% probability of
containing the target and any stimulus-based information at
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these locations only contribute noise to the decision process.
This noise can be removed or decreased, enhancing perfor-
mance, by down-weighting sensory contributions from these
uncued locations.

While SDT models may be considered as ambivalent
between these two explanations, Bayesian optimal observer
models are more constrained and would not predict any changes
in sensory encoding precision (although, see Mazyar et al.,
2012, 2013, for effects of set size upon encoding precision).
This is theoretically important because this prediction is a
direct consequence of the statistical structure of the stimu-
lus environment. Figure 4 shows generative models of tasks,
which observers putatively use (as an internal mental model)
as the basis for making inferences of the target’s location
given the cue location and the noisy sensory stimuli. There
is nothing in the generative structure of the cued localisa-
tion task linking the cue location to the standard deviation
of sensory noise, therefore the encoding precision of stim-
uli is expected to be statistically independent from the cue
location.

But what does the behavioural evidence show in terms
of the short display duration performance paradigm? There
certainly is support that signal enhancement (encoding pre-
cision effects) occur under some circumstances (Bashinski
and Bacharach, 1980; Müller and Humphreys, 1991; Down-
ing, 1988). However, the conditions under which these oc-
cur seem to be limited to studies which use backward masks
(Smith, 2000). It was also found that there is no capacity
limit to these effects, as sensitivity increases have been ob-
served for multiple locations simultaneously (Solomon, 2004).
Therefore, while sensitivity changes can and do occur, Solomon
suggests this could be due to a non-attentional process. In-
stead, the balance of evidence seems to favour a decision-
level locus as a robust explanation for cuing effects (Müller
and Findlay, 1987; Palmer et al., 1993; Palmer, 1994; Eck-
stein et al., 2002; Shimozaki et al., 2003; Eckstein et al.,
2004; Gould et al., 2007; Vincent, 2011a; Shimozaki et al.,
2012; Eckstein et al., 2013).

How do these decision-level accounts work in detail,
from a Bayesian optimal observer perspective? Put simply,
according to the Bayesian optimal observer approach, cuing
effects are the result of an updated internal prior belief of
where a target may occur (see Figure 4, bottom). We could
say the sequence of events are as follows: An observer has
a degree of belief that a target could be in 1 of N loca-
tions, thus we have N hypotheses. At the beginning of a
trial, we may assume that an observer has no information
about where the target may occur, and their prior expecta-
tions of each hypothesis being true is uniform. When the
cue appears, the observer updates their prior beliefs, given
knowledge of the cue validity. And when the stimuli appear,
the prior belief is combined with the likelihood of each hy-
pothesis. This likelihood can be thought of as how consis-

tent all of the stimuli are with the hypotheses that the target
is present in each location. One way to summarise how this
combination-step works is that the sensory information is
weighted by the prior belief. However, it is not the noisy
sensory information itself which is weighted (as in Kinchla,
1977; Kinchla et al., 1995, and SDT models), but it is the
likelihood of the sensory data which is combined with the
prior belief (Shimozaki et al., 2003; Vincent et al., 2009).

In contrast to what one may predict from the findings
from ‘attentional capture’ it is clear that observer’s weight-
ings (prior beliefs) are not drawn reflexively to cues, but
utilise the information provided by the cue. For example,
cued locations are ignored (weighted at zero) when the cues
are 100% invalid (Eckstein et al., 2004). If the cue validity
is greater than 1/N then the prior belief at the cued location
will increase, and vice-versa. This is predicted in Figure 8.
If belief in the target’s location was always increased in a
cued location, even when the cue validity indicates this is
less likely, then performance would decrease when cue va-
lidities are counter-predictive. However, this is not the case,
observers utilise the information imparted by the cue to up-
date their beliefs (Eckstein et al., 2004; Vincent, 2011a).

There is reasonable evidence that the specific cueing ef-
fects seen in these highly simplified paradigms may well be
functionally explicable by a decision level change in prior
beliefs. But these SDT and Bayesian models are simple and
in no way capture the complexity of the neural mechanisms
underlying the behaviour of observers. The more detailed
neural mechanisms involved in attention are perhaps better
left to other classes of models such as perceptual template
models (see Lu and Dosher, 1999, 1998, 2014; Dosher and
Lu, 2000; Carrasco, 2011), neural population coding models
(Pouget et al., 2000; Ma et al., 2006; Beck et al., 2008; Borji
and Itti, 2014), and predictive coding (Rao, 2005; Spratling,
2008).

3.2.3 Target prevalence

The majority of yes/no studies have utilised a target preva-
lence of 50%, however many interesting real world searches
involve rare targets, such as prohibited items in airport bag-
gage screening. Knowing whether human search performance
exhibits biases (harming their performance compared to op-
timal) would be of practical importance (Wolfe and Kenner,
2005; Mitroff and Biggs, 2013). SDT predicts that as targets
become rarer, an observer’s performance (ROC curve and
d0) should remain constant, but where they position them-
selves on this curve (their response criterion) should be-
come more conservative in order to maximise performance.
A more natural way to express this in a Bayesian manner is
that: decreasing target prevalence leads observers to require
more visual evidence to overcome their elevated prior ex-
pectation of target absence. Studies have broadly found this
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to be the case, an observer’s response criterion shifts in a
more conservative direction, leading to a decreased hit rate.
In other task domains, and in the absence of reward manipu-
lations, this shift in response criterion is near-optimal (Mad-
dox, 2002; Kubovy and Healy, 1977; Healy and Kubovy,
1981). There is also some evidence from a covert yes/no
detection task, that human observers quickly learn to opti-
mally place their response criterion so as to maximise re-
wards (Navalpakkam et al., 2009).

4 Discussion

4.1 Bayesian models: under-constrained and weakly
falsifiable?

Bayesian approaches to understanding human behaviour at
a wide variety of levels show great promise. While Bayesian
approaches are in one sense very simple, they can be com-
plex when a theoretical explanation is distilled down into
a specific model to account for a given phenomenon. This
complexity, as well as the demand for some slight concep-
tual shifts (e.g. effect versus cause, subject versus objective
probability) quite naturally leads to skepticism towards the
enthusiastic claims being made. Bowers and Davis (2012)
claimed that Bayesian models have so many degrees of free-
dom (free parameters, specification of prior, likelihood, and
utility functions) that they can account for any pattern of
data. In the context of Bayesian models of covert selective
attention, this claim seems rather ill-founded. Many of these
models have exceptionally low degrees of freedom and al-
most no room for the experimenter to alter their model to fit
the data.

Taking the cued localisation task as an example we can
run through each aspect of the model, with the criticisms in
mind. The structure of the generative model has to reflect the
actual experimental task, there is no degree of freedom here.
Due to this being an optimal observer model, the cue validity
parameter v is fixed as being equal to what was used in the
actual experiment. The parameter governing the variance of
the internal noise s2 is a free parameter, the value of which
can be estimated from the data (not demonstrated here). The
graphical model shows that there is only a single parameter,
not one for every condition, and so the effect of changing
this parameter is to influence the level of performance (see
Figure 8). There is no way that this model can predict a fun-
damentally different pattern of results, it will always predict
lowest performance when observers have uniform expecta-
tion of a target’s location (expectation levels of 1/N). Could
the data have conflicted with the predictions of the model?
Yes, it was entirely feasible that human observers did not
behave in this way. A very plausible hypothesis before ob-
serving the data would have been that a counter-predictive

cue would lead subjects to reflexively (and incorrectly) allo-
cate prior belief to the counter-predictive cue location.

Was there leeway in how the likelihood was described?
The likelihoods are the relationships between a child node
and its parents in the graphical models. In many of these
cases the relationships are determined by the task structure,
so there is no flexibility in many of these cases. The only
likelihood of relevance to this point is how internal noisy ob-
servations are Normally distributed about the true stimulus
location. It is true that there is leeway here, the specification
of this noise as being Normally distributed is an educated
guess. While a t-distribution could have been used for ex-
ample, it is a very clearly stated part of the model and it
is up to the authors to convince reviewers and readers that
these modelling decisions are reasonable.

Was there leeway in describing the priors? Because this
model is a hypothetical Bayesian optimal observer, it is as-
sumed to completely believe an experimenter’s instructions
of the cue validity and that targets are uniformly distributed.
The observer’s prior distribution of target location was equal
to the actual prior distribution governing the target’s loca-
tion. So there was no leeway for this optimal observer in
terms of specifying its prior. The notion that priors can be
chosen such that the model predictions account for the dif-
ferent patterns of data seems unrealistic in anything but highly
simplified examples, or in complex multi-parameter models.
Specification of priors, in general, can allow for some mod-
elling leeway, but just as with any modelling approach if a
particular prior distribution is required to account for data
then this can either be justified through argumentation or by
additional experiments.

In summary, the same process of examining free pa-
rameters and modelling leeway can be walked through with
many of the SDT and Bayesian models cited here. While
SDT models have some flexibility, for example in terms of
decision rules, this has been the focus of explicit investiga-
tion (e.g Baldassi and Verghese, 2002) rather than picking
the best on an ad hoc basis. In general there is very little
scope (with even less for Bayesian optimal observers) to ad-
just models, parameters, or priors to fit the data.

4.2 Bayes and optimality

If optimal observer predictions match behavioural observa-
tions then we may be justified in concluding that people are
Bayesian and optimal, for a given task. Many of the stud-
ies reviewed here fall into this category. However, despite
the assertion of Bowers and Davis (2012), advocates of the
Bayesian approach are not solely fixated upon optimality
(Griffiths et al., 2012): one can be Bayesian and suboptimal
(Ma, 2012). But what can be concluded when we find signif-
icant discrepancy between optimal observer predictions and
behavioural data? I consider three possibilities.
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People are neither optimal nor Bayesian. One of the
strengths of optimal observer modelling is that the fairly re-
stricted range of predictions means that there is ample op-
portunity to observe disconfirmatory experimental evidence.
This could mean that people are neither optimal nor Bayesian.
This does not imply that optimal observer modelling serves
no purpose: it could be seen to be the start of a process,
representing the best possible performance obtainable. De-
viations from this baseline performance level can then be
used to generate and test further hypotheses about why this
sub-optimality occurs (Geisler, 2011). In order to accept the
possibility that people are neither optimal nor Bayesian, the
following two possibilities would have to be ruled out.

People are Bayesian, but suboptimal. There are many
ways we can be Bayesian (combine prior knowledge and
current sensory evidence using Baye’s equation) and sub-
optimal. One possibility is that the Bayesian computations
are suboptimal because incorrect generative models are be-
ing used by observers. Beck et al. (2012) suggest suboptimal
inference is inevitable, especially in complex tasks such as
object recognition where the full specification of the gener-
ative model (the physics of light interacting with surfaces) is
impossible due to its complexity. Alternatively, there could
be limitations upon the ability to learn and represent com-
plex prior distributions (Acerbi et al., 2014).

Poeople are Bayesian, suboptimal for an experiment, but
optimal for the real world. Optimal observer models are very
specific models intended to derive the best possible perfor-
mance in a given task. As such, they tend to make restrictive
assumptions that are unlikely to be valid when applied to
real people. I consider two examples of strong assumptions
that are unlikely to be valid for human observers.

Assumption 1: An optimal observer’s prior beliefs are
assumed to be fixed, certain and accurate. The assumption
that an observer’s beliefs are fixed is also an oversimplifica-
tion. Droll et al. (2009) examined how human observer’s be-
liefs changed over time as they learnt cue validity. If an opti-
mal observer was correctly informed that a precue has 70%
validity, then it is optimal for the observer to completely be-
lieve this instruction and represent this precise knowledge
as v = 0.7. However, in the real world, where experimenters
can make mistakes or deliberately mislead observers, then it
seems unwise to specify complete and total belief in the ex-
perimenter’s instructions (see Fennell and Baddeley, 2012).
Therefore, it would be unrealistic to assume that human ob-
servers would use this approach. Evidence for this was pro-
vided by the exogenous cueing condition in Vincent (2011a).
Observer’s acted as though they exhibited biases in how they
mapped experimenter defined cue validity into an internal
degree of belief. These biases were in line with those ob-
served in higher-level decision making tasks, described by
Prospect Theory (Kahneman and Tversky, 1979; Tversky
and Kahneman, 1992). Instead, an observer who treated the

experimenter’s instructions of cue validity as another source
of uncertain information, would be expected to be subopti-
mal in the narrow confines of the experiment, but more ro-
bust and adaptable to the real world. Such observers could
represent their belief in cue validity as a distribution, rather
than a precise value, such as v ⇠ Beta(1+7b,1+3b) for ex-
ample, where b � 0 with higher values representing greater
belief in the task instruction. However, Martins (2006) and
Fennell and Baddeley (2012) make promising proposals along
these lines.

Assumption 2: Experimental trials are assumed to be in-
dependent events. In these simplistic experiments, each trial
is an independent event, that is the presence or absence of
a target on a trial is unrelated to its presence or absence on
the previous trial. Because this is true for these particular
experiments, an optimal observer’s generative model should
reflect this fact. An optimal observer in this context will not
display any trial-to-trial effects. However, there is abundant
evidence that people do exhibit such effects in a range of ex-
perimental task domains (reviewed by Mozer et al., 2007).
There is also an accumulating body of work suggesting that
these sequential effects are not just by-products of an arbi-
trary mechanism, but that they reflect an observer’s adapta-
tion to the temporal statistics of a task (Yu and Cohen, 2008;
Wilder et al., 2009; Green et al., 2010; Vincent, 2012; Jones
et al., 2013; Schüür et al., 2013).

4.3 Beyond the performance paradigm

The theory that observers are conducting Bayesian inference
about the state of the world based upon sensory observa-
tions, prior beliefs, and a generative model is well supported.
However, the highly simplified performance paradigm which
has enabled the theoretical assertion to be assessed by rel-
atively simple models has its limitations. The short dura-
tion of an unchanging stimulus provides experimental con-
trol over how much information about the state of the world
is imparted to the observer, but it is far removed from natu-
ralistic behaviour. Will the Bayesian concepts established in
this simplified situation extend to more naturalistic settings?
There are promising signs that the Bayesian approach can
provide insight in these situations.

A key limitation of many of the models described in
this review is that they predict performance, and not reac-
tion times. One way that combined reaction time and per-
formance predictions are made is through the use of sequen-
tial sampling models (Smith and Ratcliff, 2004), which in-
clude the drift-diffusion (e.g. Ratcliff and McKoon, 2008),
the LATER (Carpenter and Williams, 1995) and linear bal-
listic accumulator models (Brown and Heathcote, 2008). They
examine how noisy sensory information is integrated over
time to give rise to a perceptual decision or an eye movement
(e.g. Smith and Ratcliff, 2009; Ludwig, 2012). But are these
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temporal accumulation models Bayesian? It has been known
that drift-diffusion models implement optimal decision mak-
ing in two-choice decisions, but it was only recently that this
specific equivalence was made explicit through the use of a
generative model (Bitzer et al., 2014). This is an active area
of research, and clearly an interesting one in establishing the
extent of the insights that can be provided by the Bayesian
approach.

Are the results from these simple covert perceptual de-
cision making tasks (often with button press responses) able
to drive overt saccadic behaviour? Firstly, there is evidence
that saccadic behaviour (with a saccade latency measure) is
sensitive to the statistical structure of the environment, ob-
servers can learn a spatial prior of target occurrence (Car-
penter and Williams, 1995). Eye movements to localise a tar-
get also utilise information imparted by a precue (Shimozaki
et al., 2012), although not necessarily optimally. This up-
dating of expectations also extends beyond first order spa-
tial statistics (a spatial prior), people are able to learn and
use second order (sequential) statistics to update their ex-
pectations of a target’s location (Vincent, 2012). Observers
are also able to make saccades based upon prior knowledge
combined with uncertain sensory information (Liston and
Stone, 2008), a key component of demonstrating Bayesian
processes.

Can the Bayesian approach provide insight into ongo-
ing multi-fixation search? One approach of multiple-fixation
search has been based around observers making Bayesian
inferences about the state of the world, but to explore differ-
ent decision/fixation policies (Najemnik and Geisler, 2005;
Verghese et al., 2007; Najemnik and Geisler, 2008; Zhang
and Eckstein, 2010). Other work has cast doubt on the opti-
mality of saccadic decisions (Morvan and Maloney, 2012),
showing that they do not obey normative axioms of rational-
ity (Zhang et al., 2010). The added complexity of multiple-
fixation search as compared to the covert performance paradigm
is opening up a rich set of questions around how Bayesian
and how optimal people may be.

4.4 Summary

Some claim that attention simply does not exist as a causal
mechanism at all (Anderson, 2011). What we can be reason-
ably sure of is that for these tasks, we can clearly view covert
selective attention as being a set of experimental effects. A
wide range of precisely specified quantitative models have
been proposed to account for different phenomena. No SDT
or Bayesian models provide categorically poor explanations
of behaviour in this domain of short-display duration covert
tasks. All of these models are based on specific, refutable,
information processing mechanisms, and many studies com-
pare multiple models, with parallel, 1-stage, Bayesian noise-
limited explanations being favoured over serial, 2-stage, resource-

limited non-Bayesian explanations. Bayesian approaches place
emphasis upon the statistical structure of the environment,
and thus are synergistic with the approach of adaptive ratio-
nality (Anderson, 1990) which allows us to ask why these ef-
fects occur, not just what mechanisms caused those effects.
Attentional effects are not just due to the environment how-
ever, this review has emphasised the locus of these effects
as both stimulus-based and internal belief-based. In all cases
examined we can see these experimental effects as being a
set of by-products of conducting Bayesian inference in an
uncertain world. We need not invoke additional attentional
causes or mechanisms to explain these covert effects. Given
a generative model of the environment, our prior beliefs and
our noise-corrupted sensory observations, we conduct the
inferences demanded by the experimental tasks. Our internal
causal models may or may not precisely match the structure
of an actual experiment, and our subjective beliefs may not
be entirely accurate. And so in some covert search situations
we may be close to optimal, in others we may not be, but it
appears that we are still Bayesian.
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