27 research outputs found
Phenotype is sustained during hospital readmissions following treatment for complicated severe malnutrition among Kenyan children : a retrospective cohort study
Hospital readmission is common among children with complicated severe acute malnutrition (cSAM) but not well-characterised. Two distinct cSAM phenotypes, marasmus and kwashiorkor, exist, but their pathophysiology and whether the same phenotype persists at relapse are unclear. We aimed to test the association between cSAM phenotype at index admission and readmission following recovery. We performed secondary data analysis from a multicentre randomised trial in Kenya with 1-year active follow-up. The main outcome was cSAM phenotype upon hospital readmission. Among 1,704 HIV-negative children with cSAM discharged in the trial, 177 children contributed a total of 246 readmissions with cSAM. cSAM readmission was associated with age<12 months (p = .005), but not site, sex, season, nor cSAM phenotype. Of these, 42 children contributed 44 readmissions with cSAM that occurred after a monthly visit when SAM was confirmed absent (cSAM relapse). cSAM phenotype was sustained during cSAM relapse. The adjusted odds ratio for presenting with kwashiorkor during readmission after kwashiorkor at index admission was 39.3 [95% confidence interval (95% CI) [2.69, 1,326]; p = .01); and for presenting with marasmus during readmission after kwashiorkor at index admission was 0.02 (95% CI [0.001, 0.037]; p = .01). To validate this finding, we examined readmissions to Kilifi County Hospital, Kenya occurring at least 2 months after an admission with cSAM. Among 2,412 children with cSAM discharged alive, there were 206 readmissions with cSAM. Their phenotype at readmission was significantly influenced by their phenotype at index admission (p < .001). This is the first report describing the phenotype and rate of cSAM recurrence
Inflammation: the driver of poor outcomes among children with severe acute malnutrition?
Severe acute malnutrition (SAM) is the most life-threatening form of undernutrition and underlies at least 10% of all deaths among children younger than 5 years in low-income countries. SAM is a complex, multisystem disease, with physiological perturbations observed in conjunction with the loss of lean mass, including structural and functional changes in many organ systems. Despite the high mortality burden, predominantly due to infections, the underlying pathogenic pathways remain poorly understood. Intestinal and systemic inflammation is heightened in children with SAM. Chronic inflammation and its consequent immunomodulation may explain the increased morbidity and mortality from infections in children with SAM, both during hospitalization and in the longer term after discharge. Recognition of the role of inflammation in SAM is critical in considering new therapeutic targets in this disease, which has not seen a transformational approach to treatment for several decades. This review highlights the central role of inflammation in the wide-ranging pathophysiology of SAM, as well as identifying potential interventions that have biological plausibility based on evidence from other inflammatory syndromes
Biomarkers of post-discharge mortality among children with complicated severe acute malnutrition
High mortality after discharge from hospital following acute illness has been observed among children with Severe Acute Malnutrition (SAM). However, mechanisms that may be amenable to intervention to reduce risk are unknown. We performed a nested case-control study among HIV-uninfected children aged 2-59 months treated for complicated SAM according to WHO recommendations at four Kenyan hospitals. Blood was drawn from 1778 children when clinically judged stable before discharge from hospital. Cases were children who died within 60 days. Controls were randomly selected children who survived for one year without readmission to hospital. Untargeted proteomics, total protein, cytokines and chemokines, and leptin were assayed in plasma and corresponding biological processes determined. Among 121 cases and 120 controls, increased levels of calprotectin, von Willebrand factor, angiotensinogen, IL8, IL15, IP10, TNF alpha, and decreased levels of leptin, heparin cofactor 2, and serum paraoxonase were associated with mortality after adjusting for possible confounders. Acute phase responses, cellular responses to lipopolysaccharide, neutrophil responses to bacteria, and endothelial responses were enriched among cases. Among apparently clinically stable children with SAM, a sepsis-like profile is associated with subsequent death. This may be due to ongoing bacterial infection, translocated bacterial products or deranged immune response during nutritional recovery
Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected
Background: Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission.
Methods: Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (
Results: Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses.
Conclusions: The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas
KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization.
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naĂŻve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines
KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples.The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines
Molecular characterization of Plasmodium falciparum PHISTb proteins as potential targets of naturally-acquired immunity against malaria
Study focusing on evaluating PHISTb antigens as targets of naturally acquired immunity against malaria
Plasma proteomics reveals markers of metabolic stress in HIV infected children with severe acute malnutrition
HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM
Plasma proteomics reveals markers of metabolic stress in HIV infected children with severe acute malnutrition
Abstract HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM