9 research outputs found

    Predictive Malaria Risk and Uncertainty Mapping in Nchelenge District, Zambia: Evidence of Widespread, Persistent Risk and Implications for Targeted Interventions

    No full text
    Abstract. Malaria risk maps may be used to guide policy decisions on whether vector control interventions should be targeted and, if so, where. Active surveillance for malaria was conducted through household surveys in Nchelenge District, Zambia from April 2012 through December 2014. Households were enumerated based on satellite imagery and randomly selected for study enrollment. At each visit, participants were administered a questionnaire and a malaria rapid diagnostic test (RDT). Logistic regression models were used to construct spatial prediction risk maps and maps of risk uncertainty. A total of 461 households were visited, comprising 1,725 participants, of whom 48% were RDT positive. Several environmental features were associated with increased household malaria risk in a multivariable logistic regression model adjusting for seasonal variation. The model was validated using both internal and external evaluation measures to generate and assess root mean square error, as well as sensitivity and specificity for predicted risk. The final, validated model was used to predict and map malaria risk including a measure of risk uncertainty. Malaria risk in a high, perennial transmission setting is widespread but heterogeneous at a local scale, with seasonal variation. Targeting malaria control interventions may not be appropriate in this epidemiological setting

    Malaria knowledge and bed net use in three transmission settings in southern Africa

    No full text
    Abstract Background Insecticide-treated nets (ITNs) reduce malaria morbidity and mortality in endemic areas. Despite increasing availability, the use of ITNs remains limited in some settings. Poor malaria knowledge is a barrier to the widespread use of ITNs. The goal of this study was to assess the levels of malaria knowledge and evaluate factors associated with bed net use among individuals residing in three regions of southern Africa with different levels of malaria transmission and control. Methods A cross-sectional study was conducted on a sample of 7535 residents recruited from 2066 households in Mutasa District, Zimbabwe (seasonal malaria transmission), Choma District, Zambia (low transmission) and Nchelenge District, Zambia (high transmission), between March 2012 and March 2017. A standardized questionnaire was used to collect data on demographics, malaria-related knowledge and use of preventive measures. Multivariate logistic regression analyses were used to assess determinants of bed net use. Results Most of the 3836 adult participants correctly linked mosquito bites to malaria (85.0%), mentioned at least one malaria symptom (95.5%) and knew of the benefit of sleeping under an ITN. Bed net ownership and use were highest in Choma and Nchelenge Districts and lowest in Mutasa District. In multivariate analyses, knowledge of ITNs was associated with a 30–40% increased likelihood of bed net use after adjusting for potential confounders across all sites. Other factors significantly associated with bed net use were age, household size and socioeconomic status, although the direction, strength and size of association varied by study site. Importantly, participants aged 5–14 years had reduced odds of sleeping under a bed net compared to children younger than 5 years. Conclusion Relevant knowledge of ITNs translated into the expected preventive behaviour of sleeping under a bed net, underscoring the need for continued health messaging on malaria prevention. The implementation and delivery of malaria control and elimination interventions needs to consider socioeconomic equity gaps, and target school-age children to ensure access to and improve utilization of ITNs

    Distinct Antibody Signatures Associated with Different Malaria Transmission Intensities in Zambia and Zimbabwe

    Get PDF
    As malaria approaches elimination in many areas of the world, monitoring the effect of control measures becomes more important but challenging. Low-level infections may go undetected by conventional tests that depend on parasitemia, particularly in immune individuals, who typically show no symptoms of malaria. In contrast, antibodies persist after parasitemia and may provide a more accurate picture of recent exposure. Only a few parasite antigens—mainly vaccine candidates—have been evaluated in seroepidemiological studies. We examined antibody responses to 500 different malaria proteins in blood samples collected through community-based surveillance from areas with low, medium, and high malaria transmission intensities. The breadth of the antibody responses in adults was broad in all three settings and was a poor correlate of recent exposure. In contrast, children represented a better sentinel population for monitoring recent malaria transmission. These data will help inform the use of multiplex serology for malaria surveillance.Antibodies to Plasmodium falciparum are specific biomarkers that can be used to monitor parasite exposure over broader time frames than microscopy, rapid diagnostic tests, or molecular assays. Consequently, seroprevalence surveys can assist with monitoring the impact of malaria control interventions, particularly in the final stages of elimination, when parasite incidence is low. The protein array format to measure antibodies to diverse P. falciparum antigens requires only small sample volumes and is high throughput, permitting the monitoring of malaria transmission on large spatial and temporal scales. We expanded the use of a protein microarray to assess malaria transmission in settings beyond those with a low malaria incidence. Antibody responses in children and adults were profiled, using a P. falciparum protein microarray, through community-based surveys in three areas in Zambia and Zimbabwe at different stages of malaria control and elimination. These three epidemiological settings had distinct serological profiles reflective of their malaria transmission histories. While there was little correlation between transmission intensity and antibody signals (magnitude or breadth) in adults, there was a clear correlation in children younger than 5 years of age. Antibodies in adults appeared to be durable even in the absence of significant recent transmission, whereas antibodies in children provided a more accurate picture of recent levels of transmission intensity. Seroprevalence studies in children could provide a valuable marker of progress toward malaria elimination

    Additional file 1: Table S1. of Spatio-temporal heterogeneity of malaria vectors in northern Zambia: implications for vector control

    No full text
    Williams mean (Mw) catch (95 % C.I.) of An. funestus (s.l.) and An. gambiae (s.l.) by season and locality. Collections were made from CDC miniature light traps from May 2012 to April 2014 in Nchelenge district, Zambia and are presented by season (Dry: May to September, Rainy: November to April) and by locality (within 3 km of the lake; inland). Data represent catches from cross-sectional study households and first visit to longitudinal households. (DOCX 12 kb
    corecore